首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用熔体发泡法制备纯铝基泡沫铝.采取快速搅拌加发泡剂的方法,解决了在高于纯铝熔点温度下,发泡剂分解速度快而不利于均匀混合到熔体中的难点;重点研究了发泡时间对制得的纯铝基泡沫铝质量的影响.研究表明,制备质量优良的纯铝基泡沫铝材料的最佳工艺条件为:增黏剂金属钙的加入量为2%~3%;增黏搅拌时间为4~5 min;发泡剂的加入量为1.0%~1.5%;加发泡剂时熔体的温度为690~700℃;搅拌速度为1500~1800 r/min,搅拌时间为3 min,发泡剂控制在1.5 min内加完,发泡时间为4~5 min;自然冷却法冷却.压缩性能的检测结果表明,纯铝基泡沫铝的压缩强度比Al-Si合金泡沫铝的压缩强度...  相似文献   

2.
采用热压烧结制备的碳化硼陶瓷和发泡法制备的泡沫铝,经环氧树脂黏结后制备得到碳化硼--泡沫铝双层复合材料.通过对材料靶板进行实弹靶试试验,着重研究和分析了该双层复合材料的防弹性能.靶试试验中,使用口径分别为7.62mm和12.7 mm的穿甲燃烧弹,冲击速度约820 m·s-1,射击距离为10m.试验结果表明:碳化硼--泡沫铝双层复合材料对7.62mm口径穿甲燃烧弹具有较好的防护能力,其防护系数范围为5.06~5.12.  相似文献   

3.
4.
无压渗透制备铝基复合材料及其性能的研究   总被引:4,自引:0,他引:4  
采用无压渗透新工艺制备了Al2O3颗粒增强铝基复合材料,叙述了无压渗透工艺过程。通过金相显微镜、X-射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)等手段,对(Al2O3)p/Al的微观结构进行了分析;测试了铝基复合材料的力学及热物理性能。结论表明,铝基复合材料显微结构致密、渗透完全。在Al2O3与Al的界面处,基体合金中的镁与增强剂Al2O3反应,原位生成MgAl2O4尖晶石晶体,其质量分  相似文献   

5.
试验采用搅拌铸造法制备了纳米碳管增强铝基复合材料,对其显微组织、硬度、抗拉强度和电阻率进行了研究.结果表明:纳米碳管的加入能够细化复合材料晶粒,表面镀铜后可以抑制基体与增强体之间的界面反应,避免脆性碳化物的生成;复合材料的硬度和抗拉强度随着纳米碳管加入量的增加先增加后减小,纳米碳管的质量分数为1.0%时,达到最大值,与基体相比分别增加了34.8%和34.4%;纳米碳管的加入对基体的导电性影响不大.  相似文献   

6.
泡沫铝是一种新型超轻多孔金属,具有超轻、高比强、高比刚、阻尼减振、高冲击能量吸收和优异的热、电、磁性物理和应用性能,实现了结构材料的多功能化,因而展现了广阔的应用前景。泡沫铝可以通过采用熔体发泡法、渗流法、熔模铸造和电镀法、粉末冶金法和吹气法等制备,相应的方法所制备出的泡沫铝具有各自的孔结构,因而可以针对于满足相应的高技术应用需求。  相似文献   

7.
泡沫铝的研究现状与应用展望   总被引:5,自引:0,他引:5  
泡沫铝的多孔结构和金属特性使其在吸声、减震、过滤厦热交换等方面具有优异的性能。介绍了目前国内外泡沫铝的研究进展和基本制备方法,描述了泡沫铝的结构厦特殊性能,并分析了现存工艺、发泡机理及性能分析等方面问题,对泡沫铝在各个领域的应用进行了展望。  相似文献   

8.
介绍了在真空条件下利用电磁搅拌技术与机械搅拌技术复合法制备含量为10%的α-Al2O3颗粒增强铝基复合材料和基体材料的方法,并分别测试分析了复合材料和基体的摩擦磨损性能.结果表明,α-Al2O3颗粒增强铝基复合材料的磨损量明显低于基体的,且摩擦因数也小于基体的摩擦因数.  相似文献   

9.
孟龙 《科技信息》2009,(18):65-66
纤维增强铝基复合材料具备的优良综合性能,越来越受到人们的重视。本文综述了纤维增强铝基复合材料的研究进展,概述了纤维增强体的性能特点和制备方法,介绍了纤维增强铝基复合材料的主要制备方法,并对几种典型的纤维增强铝基复合材料的性能、制造工艺和应用现状进行了论述。  相似文献   

10.
多孔泡沫铝性能研究现状及应用前景展望   总被引:13,自引:3,他引:13  
多孔泡沫金属是一种内部含义许多空隙的新型材料。由于其具有非泡沫金属所没有的优异特性,因而在一般工业领域特别是高技术领域受到越来越广泛的重视,也引起了国内外浓厚的研究兴趣。多孔泡沫铝是目前研究最为成熟的一种泡沫金属材料,本文对国内外泡沫铝性能研究现状及其应用予以综合概述,并对泡沫铝应用前景进行展望,以期推动泡沫铝的进一步研究和应用。  相似文献   

11.
玻璃纤维增强泡沫混凝土性能试验研究   总被引:5,自引:0,他引:5  
在泡沫混凝土中加入不同掺量玻璃纤维,制成纤维泡沫混凝土复合材料,测定了它的物理力学性能.结果表明,加入玻璃纤维增加了泡沫混凝土的抗压强度和抗折强度,极大地改善了韧性,并在一定程度上抑制了早期干缩开裂,而且对导热系数影响不大;因此,加入玻璃纤维可以有效改善泡沫混凝土的性能.  相似文献   

12.
镍铁合金矿热炉渣辅助胶凝材料的制备与性能   总被引:1,自引:1,他引:1  
镍铁合金矿热炉渣大量堆存,数量越来越多,已经严重影响镍行业的可持续发展。通过粉磨,镍铁合金矿热炉渣被机械活化,可用其制得辅助胶凝材料,实现了对镍铁合金矿热炉渣的综合利用。用其等质量取代水泥10%~40%,随着掺量增加,水泥标准稠度用水量逐渐降低,胶砂流动度逐渐提高;胶砂抗压强度逐渐降低,抗折强度先增加,掺量超过10%后逐渐降低,折压比逐渐升高。试验结果表明,镍铁合金矿热炉渣可以用作辅助胶凝材料,并具有提高抗折强度、增塑减水等作用。  相似文献   

13.
锦屏大理岩相似材料制备及其力学性能分析   总被引:2,自引:0,他引:2       下载免费PDF全文
基于深埋隧洞围岩岩爆模拟实验的需要,以锦屏大理岩为工程背景,采用石英砂、重晶石砂、重晶石粉、松香和酒精研制了一种新型的以松香作为胶结剂的岩石相似材料。通过多次试配总结了相似材料的制备方法,以粗细骨料质量比例和松香用量2个参数为主要变量,制作了16组不同配比的试样,开展了单轴压缩实验,并测算了试样的重度。实验结果表明,相似材料的抗压强度和弹性模量受松香用量的影响较大,拟合得到了抗压强度-松香掺量关系式,并计算得到了模拟锦屏大理岩的材料配比。为提高相似材料的适用性,对材料比重和弹性模量的调整方法进行讨论得出,可以将重晶石砂替换为石英砂以调节材料重度,在材料中掺入少量的硅油或橡胶粉,可以调节其弹性模量。  相似文献   

14.
为探讨不同尺度SiCp对SiCp /Al复合材料力学性能的影响,对亚微米和微米SiCp增强Al基复合材料的抗拉和抗压等力学性能进行研究.结果表明:SiCp/Al复合材料具有良好的塑性,伸长率随SiCp体积分数和尺寸的增加而减小;其抗拉强度和抗压强度随SiCp体积分数的增加而增加.亚微米SiCp/Al的拉伸和压缩性能均优于微米SiCp/Al.亚微米SiCp /Al复合材料的断裂机制为SiCp/Al界面处空洞的形成及其在基体内扩展.微米SiCp/Al存在 SiCp的解理断裂及其沿基体扩展的复合过程.  相似文献   

15.
采用X射线小角散射技术和压汞法测定了水泥基复合材料的孔结构,结合孔结构模型试验和有限元计算分析,研究了水泥基复合材料的孔结构与强度的相关性。结果表明,孔隙率、孔分布、孔形状和孔界面分形维数与强度之间存在一定的相关性,孔结构对抗压强度的影响与对抗折强度的影响有所不同。  相似文献   

16.
有机小分子及金属有机配合物电子传输材料的研究进展   总被引:4,自引:0,他引:4  
概述了有机小分子及金属有机配合物电子传输材料的研究进展,对由小分子电子传输材料构成的有机电致发光器件的发光性能、发光效率等方面进行了比较,并对小分子材料的研究前景进行了展望.  相似文献   

17.
分别以高塑性低强度工业纯铝、高强度低塑性的铝-镁合金及高脆性的铝-锌合金为原材料制备出相同胞结构的开孔泡沫铝,并对其进行压缩实验研究。实验结果表明,基体性能对泡沫铝合金的压缩行为和吸能性有显著影响,虽然不同基体性质的泡沫铝合金压缩过程均出现3个明显的变形区域,但变形行为不同。以高塑性工业纯铝为基体的铝泡沫表现出典型的塑性泡沫特征和较低的坍塌屈服强度,而高强度脆性基体的铝-锌泡沫呈现典型的脆性泡沫特征和较高的弹性模量及屈服强度,在相同应变量情况下,其吸能量和吸能效率均明显高于另外2种泡沫铝。  相似文献   

18.
低掺量PA6短纤维水泥基材料的力学性能及耐久性   总被引:1,自引:0,他引:1  
采用PA6短纤维在较低掺量情况下对水泥基材料力学性能及耐久性进行了研究 ,并与Nycon纤维进行对比。结果表明PA6短纤维可明显提高水泥基材料的抗冲击性能和抗冻融性能 ,对水泥基材料其他性能没有影响 ,PA6短纤维在水泥基材料中可免受大气老化影响 ,其综合性能达到国外同类产品水平  相似文献   

19.
设A是n阶对称布尔矩阵,G(A)是它的伴随图,C2(A)是A的二级组合合成,本文证明了:若G(A)为二分图,则C2(A)可约;若G(A)是含奇圈的2-连通图,则C2(A)是不可约和本原的,它的本原指数r(C2(A))≤n^2-2n-1。  相似文献   

20.
钟娟  王冬 《应用科技》2006,33(9):21-24
采用挤压铸造法制备了Al2O3p颗粒非均匀增强Al基复合材料,并对其组织和性能进行了分析和测试。结果表明:与均匀增强复合材料相比,其挤压铸造所需的浸渗压力以及预制体压缩变形减小,在保持复合材料强度的同时,韧性有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号