首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
为研究盾构下穿时,列车荷载作用下既有高铁桥梁动力响应。以盾构下穿某高速铁路简支梁桥为工程背景,运用有限元软件Midas/GTS建立盾构隧道先后下穿高铁桥梁模型,分析盾构下穿时列车荷载作用下高速铁路简支桥梁动力响应。首先分析了当盾构开挖至桥梁近侧,列车以不同速度200~350 km/h、不同轴重110~220 kN运行时对高速铁路简支梁桥墩顶沉降的影响。接着探讨在不同开挖阶段,速度200 km/h、轴重110 kN的列车动荷载冲击下高铁桥梁墩台顶变形规律。结果表明:盾构开挖至桥梁近侧时,不同速度、轴重列车荷载冲击下,高铁桥梁墩台顶的变形规律基本一致,其沉降在一定时间达到峰值,其后逐渐回升并稳定在某一波动范围内;随着列车速度与轴重的增加,墩台顶沉降峰值越大;盾构开挖时,列车时速低于200 km/h、轴重小于110 kN时其墩台顶沉降峰值当满足高铁桥梁单墩顶竖向沉降控制标准,与列车速度相比,列车轴重对桥梁的动力响应影响更大;列车动荷载作用下,盾构隧道开挖对高铁桥梁墩顶变形的影响主要为盾构开挖至桥梁近侧的初开挖阶段,盾构开挖远离桥侧后墩顶变形基本处于稳定状态。  相似文献   

2.
主要讨论地震荷载作用时车桥系统的动力响应特征及对行车稳定性的影响。建立了地震作用下综合考虑输入地震波、轨道不平顺和车辆蛇行运动的车桥体系振动的动力分析模型,推导了体系动力平衡方程组。通过对系统输入各种典型的地震波,在计算机上模拟了列车过桥的全过程动力响应。计算了桥梁的线性和非线性响应,研究了列车荷载及桥梁下部结构刚度对地震响应的影响,以一座刚梁柔拱组合系桥为例,研究地震发生时桥上列车的运行稳定性和这种桥梁的位移、速度和加速度等动力响应特性。  相似文献   

3.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

4.
车辆行驶引起的桥梁振动的动力响应数据是车桥耦合振动分析中重要参数。采用超声波测速仪、录像机及桥梁动态测试仪同人工记录相结合的方法,对高速公路交通荷载各要素进行24h连续、全面调查,记录的数据包括车型、车速、行驶车道、车辆到达时间以及每辆过桥车辆引起的桥梁动力响应数据。本调查采集了8片梁的5 650单车过桥的动响应数据,研究了交通荷载调查样本中不同梁体的动力响应数据的统计规律,全面分析了高速公路交通荷载车辆过桥引起的桥梁动力响应的时空分布规律。研究结论能够给车桥耦合振动研究及相关研究提供有益的理论指导和数据支持。  相似文献   

5.
为研究列车-大跨度板桁结构斜拉桥耦合振动引起的整体与局部振动响应问题,提出了基于车-桥耦合动力学的数值分析方法.首先建立桥梁结构精细化三维有限元模型,并由直接刚度法建立桥梁子系统动力方程;列车采用31自由度刚体动力学模型,轮轨之间分别采用赫兹非线性接触模型和非线性蠕滑力模型计算法向力和蠕滑力;利用自主开发软件TRBF-DYNA开展车-桥耦合系统加速度、动位移以及动应力分析.以主跨406m的三塔斜拉桥荆岳铁路洞庭湖大桥为研究对象,开展了不同行车线路、不同车速以及不同轨道不平顺条件下的耦合系统动力响应分析,研究了桥梁整体和局部动力响应,以及列车运行安全性指标和乘坐舒适性指标的变化规律.结果表明:正交异性钢桥面板的局部动力响应远大于钢桁架主梁;大跨度斜拉桥的动力系数较小,受车速和轨道不平顺谱的影响较小;钢桁架主梁下弦杆和腹杆处于高周疲劳应力工作状态,在疲劳性能研究中需要特别关注;设计速度条件下,桥梁动力响应指标以及列车运行安全性和舒适性指标均满足规范要求.  相似文献   

6.
为研究上海长江大桥在风、汽车荷载、温度、道路不平顺多因素影响下的列车走行性,将其视作温度变形、公路与轨道不平顺作用下的风-车-桥耦合动力系统。建立桥梁、列车车辆、不同类型汽车的有限元模型,采用模态叠加法进行车-桥动力计算。计算中运用随机交通流模型模拟公路交通流,采用文献中针对该桥风洞试验测定的主梁及车辆的气动参数,并将年温差引起的桥梁变形叠加到轨道和路面随机不平顺中。采用自编车-桥耦合计算软件VBC进行风-车-桥耦合动力分析。分别考虑了有无风荷载作用下温度荷载、汽车车流类型和列车运行方式的影响,并对多荷载作用组合下的极限状况进行讨论,分别考虑了列车空员、定员和满员3种不同载重的影响。最后,根据不同车速和风速组合下的计算结果,确定轮对横向力为列车走行性的控制指标,并提出了列车安全、舒适运行的管理原则。研究结果表明:年温差和汽车车流对列车动力响应的影响并不明显,列车响应随车速、风速的增大而增大;列车相对于风向的运行方式对列车走行性也有很大影响;在较高风速下,单线列车迎风侧行驶为列车的最不利运行方式;当风速小于20 m/s时,最高运营车速可达到90 km/h;当风速大于20 m/s且不超过25 m/s时,运营车速应小于70 km/h;当风速超过25 m/s时,应当封闭轨道交通。  相似文献   

7.
风荷载-列车-大跨度桥梁系统非线性耦合振动分析   总被引:1,自引:0,他引:1  
考虑桥梁结构的几何非线性因素,建立了风-列车-桥梁系统耦合振动分析模型.以某大跨度钢桁梁桥为例,计算了静风及脉动风荷载的不同作用效应、风速及车速变化对桥梁位移极值的影响及桥梁几何非线性因素对结构分析的影响.结果表明,进行车桥耦合振动分析时要综合考虑风荷载的动力作用,风速及车速变化对桥梁位移极值均有较大影响,桥梁的线性及非线性位移时程曲线存在明显区别.  相似文献   

8.
为有效分析列车引起的桥梁应力响应,对车桥耦合动力分析法、静力影响线法及移动集中力法3种列车作用下的桥梁应力响应计算方法进行了深入的比较研究.采用3种方法对2座铁路典型混凝土简支T梁和下承式钢桁梁桥进行应力响应分析,基于桥梁现场实测数据对比分析了不同方法的计算结果,研究了列车速度和桥梁横向振动对应力结果的影响.结果表明:车速对桥梁应力响应有显著的影响,共振发生时3种方法的计算结果相差较大,消振条件下三者区别减小;由列车水平方向作用力引起的桥梁或构件横向振动对应力响应的贡献不容忽视;车桥耦合动力分析法能够更为真实地反映桥梁构件的动应力历程,在高速、桥梁横向刚度较低或列车局部加载的情况下尤其具有计算精度优势.研究结果可为3种不同计算方法的工程应用提供参考.  相似文献   

9.
主要研究脉动风与列车荷载同时作用下斜拉桥的横向振动问题。首先建立了横风作用下并考虑了轨道不平顺和车辆蛇行的车桥系统动力分析模型,推导了体系平衡方程组,编制了有关的计算机程序;根据Darvenport风速功率谱模拟产生脉动风样本,并将其作为系统的随机激励,在计算机上模拟列车过桥的全过程,按不同车速计算了桥梁跨中和桥塔的横向位移、加速度以及桥上车辆的横向振动加速度响应。以一铁路斜拉桥为例,着重讨论了在正常使用极限状态下当风速小于30m/s时的车桥系统动力响应的一些问题。  相似文献   

10.
利用有限元方法对列车移动荷载作用下运营隧道-加固区-地层的系统动力响应展开研究,并分析了不同列车运行速度对结构-地层系统各部分加速度、动应力和动位移的影响规律。结果表明:因加固区刚度相对衬砌极小且有一定的厚度,加速度在加固区中得以显著衰减,动力传递介质的突变使应力在衬砌与加固区交界处骤降,位移的减弱主要发生在受列车荷载影响较小的深厚地层;当列车运行速度提高时,动荷载幅值增大,相应加速度峰值单调增大;位移同样随列车速度的增大而呈不同程度地提高;由于与列车静荷载相比,动荷载幅值的变化极小,故列车运行速度的改变对应力峰值的影响较小。  相似文献   

11.
针对大跨度轨道专用斜拉桥预拱度设置问题,兼顾结构功能及变形与乘坐舒适性,提出静活载预拱度系数取为-0.7。依据工程实例,进行桥梁自振特性及动力响应分析,得到基于动力响应的静活载预拱度设置方法。竣工荷载试验表明,静活载预拱度按静活载所产生挠度的0.7倍反向设置,桥梁结构满足要求。经数值模拟,轨道列车横向加速度小于0.6 m/s~2,竖向加速度小于1.0 m/s~2,总体舒适性及瞬时舒适性较高,验证了预拱度设置的合理性。  相似文献   

12.
沪昆客专北盘江大桥为上承式混凝土铁路拱桥。大桥建成后,相关单位利用动态检测方法获取了CRH380动车以不同速度通过大桥时的多项动力响应,并分析评价了桥梁的动力性能。为探究动力仿真分析方法的模拟效果,本文以该桥为背景,采用MSC系列软件建立列车-轨道-桥梁动力学仿真模型,采用德国低干扰谱作为动车组的轨道不平顺激励,模拟列车过桥的全过程,获得桥梁结构的动力响应规律,并将仿真分析结果与实测结果进行对比验证。分析结果表明:大桥一阶横弯与竖弯频率计算值分别为0.301Hz和0.588Hz,与实测的横弯频率0.29Hz、竖弯频率0.57Hz接近;采用德国低干扰谱,其波长和幅值能较好地模拟动车组通过大桥的动力响应,数值仿真计算和实车动态测试的结果接近。  相似文献   

13.
Beijing-Tianjin intercity railway is the first newly-built passenger dedicated line with operating speed of 350 km/h in our country. During design,new ideas of bridge construction were carried out to ensure the requirements of safety,comfort and stability of the train under high-speed condition. At the same time,concepts of environmental adaptability,service to transportation and comprehensive benefits were observed. On the whole line,long-bridge schemes were adopted and the most advanced technologies of unballasted track were utilized on bridges,the length of which accounts for 87.7 % of the total line. The success of design and construction of the bridges on this rail has accumulated valuable experience for high-speed railway construction on a large scale in the future,and made it a marking,demonstrating,and model project to follow.  相似文献   

14.
客运专线隧道空气动力学实车测试技术的研究与应用   总被引:1,自引:0,他引:1  
研究客运专线列车高速通过隧道时诱发的空气动力效应的实车测试技术。针对实车测试工作要求,提出采用PC-DAQ结构作为测试系统基本结构,以传感器、数据采集卡和PC机构成系统硬件平台,用虚拟仪器技术设计系统软件,设计和实现遂渝线隧道空气动力学实车测试系统。通过分析实车测试工况下车体表面压力波的数值计算结果,估计被测空气压力波的频率范围,确定测试系统合理采样频率可设置为300~500 Hz。在遂渝线200 km/h提速综合试验中的应用结果表明,该测试系统能够满足客运专线隧道空气动力学实车测试的需要,检测方法灵活、快速,测试结果准确、可靠;时速200 km动车组经过松林堡隧道时,产生的空气压力波具有的最高频率低于100 Hz。  相似文献   

15.
列车速度较高时,铁路隧道净空面积的确定不能仅考虑隧道建筑限界和机车车辆限界,还要考虑列车通过隧道时诱发的气动效应,其中车内瞬变压力指标是需要着重考虑的问题。我国城际铁路建设刚刚起步,没有针对城际铁路隧道净空面积的规范出台,各设计单位参照客运专线铁路的标准并结合我国实际情况考虑了车速120、160、200 km/h的城际铁路隧道净空面积,但此隧道净空面积在我国列车实际密封性能条件下是否能够满足舒适度标准仍需予以论证。结合我国列车实际密封性能和现行舒适度标准,通过大量数值计算,提出了考虑车内瞬变压力指标的我国城际铁路隧道需满足的净空面积值,可为我国城际铁路相关标准、规范的制订提供参考依据。  相似文献   

16.
以普通混凝土框架桥工程为研究对象,采用有限元分析软件中的实体单元solid65建立了混凝土框架桥数值模型.利用完全法瞬态动力计算分析得到的框架桥跨中节点的挠度-时间曲线,可以反映出列车在不同速度下通过框架桥时桥体发生的动态响应特征,即框架桥的位移响应特征.结果表明,90~120 km/h为列车通过框架桥的最佳速度区间,此时框架桥的动态挠度时程曲线呈缓慢地上下波动,该速度区间下桥体的最大变形量为2.79×10-5 m,位置发生在跨中附近,时间发生在列车经过跨中位置的前后时刻.  相似文献   

17.
以普通混凝土框架桥工程为研究对象,采用有限元分析软件中的实体单元solid65建立了混凝土框架桥数值模型.利用完全法瞬态动力计算分析得到的框架桥跨中节点的挠度-时间曲线,可以反映出列车在不同速度下通过框架桥时桥体发生的动态响应特征,即框架桥的位移响应特征.结果表明,90~120 km/h为列车通过框架桥的最佳速度区间,此时框架桥的动态挠度时程曲线呈缓慢地上下波动,该速度区间下桥体的最大变形量为2.79×10-5 m,位置发生在跨中附近,时间发生在列车经过跨中位置的前后时刻.  相似文献   

18.
铁路桥梁的动力行为(动挠度、动加速度)是桥上高速列车运行安全控制的重要指标之一。为此,基于列车动力指纹线和桥梁动力指纹线的概念,将列车激励简化为一组移动集中力,从理论上推导出了列车动力指纹线的数学表达式,提出了简支梁跨中竖向最大加速度的简化计算方法,据此得到车桥发生共振时列车速度,从而可以快速计算简支桥梁的动力行为。通过实例验证了文中方法的可行性,并分析了车桥共振的发生机理、影响参数,以及桥梁加速度计算时高频成分的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号