首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
为了满足现代通信的要求,论文设计了一种新型圆形共面波导双陷波超宽带天线。天线采用共面波导馈电,实现了良好的超宽频带阻抗匹配。通过在圆形辐射贴片上加载两个C型缝隙,分别在WLAN频段和WiMAX频段处产生陷波,满足了电磁兼容的要求。通过对天线的理论计算结果、仿真结果和实测结果进行比较,吻合较好,通带内天线的回波损耗在-10 dB以下,方向图基本一致,辐射效果良好;阻带内天线增益下降分别为3.2 dB和7.5 dB,实现了较好的陷波抑制辐射作用。  相似文献   

2.
梯形双陷波超宽带平面单极子天线的设计与分析   总被引:1,自引:0,他引:1  
设计一种梯形双陷波超宽带平面单极子天线, 并分析改变C形缝隙陷波结构半径和L形缝隙对天线性能的影响. 天线由梯形组合结构辐射单元、 共面波导馈线、 地板和同轴接头构成. 结果表明, 当设计的天线工作频段为2.9~11.2 GHz, 陷波频段为3.28~3.79 GHz和4.82~6.08 GHz时, 双陷波与辐射效果良好, 可降低各无线通信系统间频段交叉重叠导致的相互干扰.  相似文献   

3.
共面波导与微带线相比具有较低的损耗,并易于与其它电路结构集成。传统共面波导馈电的矩形单极子天线频带较窄。为了展宽天线带宽在矩形贴片底部开槽,并将共面波导的中心导带延伸至凹槽顶端进行馈电。将凹槽的顶端和共面波导的一部分地面设计成渐变结构,并通过在凹槽中插入阶梯结构对天线的输入阻抗进行调整。仿真结果表明,新型结构可将天线带宽由原来84.8%展宽到167.2%(频率范围为:2.17GHz~24.3GHz,S11≤-10dB)。实际测试结果与仿真值吻合良好。该天线具有近似全向的辐射特性,适合于便携式超宽带通信系统。  相似文献   

4.
提出了一种新型共面波导(CPW)馈电的,具有带阻特性的平面单极子超宽带(UWB)天线.为了抑制与WLAN、WiMax系统的干扰,通过在天线平面上开槽,从而达到了在天线频段上的带阻特性.该天线回波损耗S11≤-10dB的工作频带带宽达到了2.75~11GHz,并且在2.75~3.29GHz、4.1~4.9GHz、6.08~8GHz频带内形成阻带.利用电磁仿真软件优化,并绘出天线的方向图,结果表明该设计方法的有效性.  相似文献   

5.
设计了一个新型的超宽带天线.天线由一个圆环内部带两个三角的的结构作为地面,环形地内部是一个矩形的贴片的辐射器.天线采用共面波导馈电.在设计过程中使用时域有限差分方法对天线尺寸进行仿真和优化,测试结果显示在3.0-11GHz的范围内天线的反射损耗小于-10dB.  相似文献   

6.
一种小型平面陷波超宽带天线   总被引:1,自引:0,他引:1  
本文提出了一种应用于超宽带系统的带陷波结构的共面波导馈电小型平面超宽带天线.天线采用印刷电路板上的矩形贴片作为辐射单元,并由同一面上的共面波导(CPW)馈电,通过在矩形贴片上开一个C形槽来实现陷波功能,电磁仿真软件Ansoft HFSS10的仿真结果显示,合适地选择C形槽的尺寸可以调整陷波的中心频率和带宽.仿真及实验结果表明,该天线在3.1-10.6GHz工作频段内电压驻波比小于2,在5-6GHz范围内具有陷波特性,有效地阻隔了无线局域网(WLAN)系统对超宽带(UWB)系统的影响,在整个工作频段内有稳定的增益和良好的辐射方向特性.  相似文献   

7.
翼形地板超宽带(UWB)印刷天线   总被引:5,自引:0,他引:5  
提出了一种新型结构的共面波导超宽带(UWB)天线.该天线由一个半圆形金属贴片和一个翼形结构的金属地板构成,这种平面印刷结构的天线不但具有超宽带性能,而且体积小、结构简单、加工简便.实测天线的-10 dB反射损耗的频率覆盖范围为3.6~11.0GHz,阻抗带宽达到3倍频.这种天线很适合应用于目前的短程超宽带通信系统.  相似文献   

8.
设计了一种基于陷波结构的三频微带印刷天线,以平面单极子天线为基础,采用共面波导馈电,通过在辐射贴片和微带线上加载缝隙实现了天线的三频特性。用电磁仿真软件HFSS12对天线进行设计优化,根据仿真结果制作了天线样品,测试结果与仿真结果吻合较好。天线回波损耗大于10dB的工作频段为1.85~2.53GHZ,3.14~4.38GHz和4.87~5.93GHz,可以很好地覆盖Bluetooth(2.4~2.48GHz),WiMAX(3.4~3.6GHz)和WLAN(5.15~5.825GHz)3个频段。在工作频带内阻抗特性和方向图特性良好,可以满足无线通信的要求。  相似文献   

9.
设计了一种具有陷波特性的共面波导馈电超宽带天线.天线大小为(25mm×26mm×0.64mm),利用仿真软件CST对其进行了仿真,对天线的阻抗特性、方向图和增益进行了研究.结果显示,该天线在3.1GHz到大于20GHz的频带范围内VSWR〈2,其中在5.1~6.2GHz间具有陷波特性.该天线在整个工作频段内有良好的辐射方向特性.  相似文献   

10.
提出一种新型的小型超宽带(UWB)宽缝天线,并对其进行带阻功能设计.该天线采用椭圆结构的调谐支节,并由共面波导进行馈电.为获得超宽带工作特性,将其辐射缝隙设计为对称多边形.对该天线的性能进行仿真和实验研究,实测结果表明,该天线的-10 dB反射损耗频率范围为3.2~10.1 GHz.另外,通过在椭圆支节上开W形槽,使天线实现对无线局域网(5.150~5.825 GHz)频段的带阻功能.  相似文献   

11.
设计了一种具有陷波特性的超宽带天线,天线的阻抗带宽为118.8%.所设计的天线印刷在尺寸为30mrn×34mm×1.5mm,介电常数为3.5的介质基板上.通过在接地板上刻蚀“工”字形槽,有效地展宽天线的带宽,使其满足超宽带通信(UWB)系统(3.1~10.6GHz)的通信需求.同时为了实现该天线与无线局域网(WLAN)系统的协同工作,利用微波开路微带线技术产生陷波,从而避免WLAN对UWB通信的干扰.采用高频结构仿真软件HFSS对影响天线性能的关键参数进行设计、仿真、分析和优化,从而得到天线的最佳尺寸.实验结果表明,该天线在小型化的同时实现了宽带和陷波的要求,从而证明了设计方法的可行性和有效性.  相似文献   

12.
本文设计了一种具有多阻带特性的平面超宽带天线.该天线由共面波导(CPW)馈电单元和一个椭圆形的辐射单元构成.辐射单元上的C型槽产生了第一条阻带,其中心频率为3.5 GHz.地板上两对称的蛇形槽线产生了第二条阻带,其中心频率为5.5 GHz.第三条阻带,即超宽带高频段的截止阻带,通过馈线上的U型槽实现.天线的测量结果与仿真结果吻合较好,在超宽带频带内实现了3.2 GHz~3.8 GHz,5.05 GHz~5.9 GHz以及高于10.7 GHz的阻带,表明其在工作频带内具有良好的抑制干扰能力.此外,讨论了天线的增益、群时延响应和信号波形保真度,结果表明此天线具有良好的频域特性和时域特性.  相似文献   

13.
张炀 《科学技术与工程》2012,12(12):2825-2827
设计一种新型超宽带全向天线。采用交叉结构改善了单极子天线方向图发生分裂的问题。提出了一种多圆嵌套的天线外形曲线,有效的改善了在工作频带内的阻抗匹配特性。在CST软件中建立天线模型,并进行仿真和优化。制作实物并测试,结果显示天线在0.47-25.5GHz频带内,反射系数优于-10dB,带宽比达到了53:1。全工作频带内方向图稳定,H面不圆度小于5dB。在电磁环境监测、超宽带通信以及脉冲雷达领域,具有重要的应用价值。  相似文献   

14.
为避免窄带通信系统对超宽带(ultra-wideband,UWB)系统的干扰冲突,提出一款具有双陷波特性的新型类Sierpinski分形超宽带天线的设计方法.天线采用由2个正六边形与圆形嵌套迭代而成的3阶类Sierpinski分形结构作为辐射贴片,并采用截短矩形两侧去切角且中间去矩形的缺陷地结构作为天线的接地板,实现了...  相似文献   

15.
考虑到超宽带(UWB)无线通信系统对现有无线通信系统工作的影响,设计一种具有IEEE WiMAX和IEEE WLAN双陷波特性的超宽带天线.该天线尺寸大小为1.0 mm×20 mm×25 mm,采用扇形阶梯状贴片作为主辐射单元,通过在该辐射贴片上嵌入L形和半圆环形槽缝来实现陷波特性,并且在主辐射单元2边增加附加矩形贴片来展宽天线阻抗带宽.仿真实验结果表明:天线的阻抗带宽为3.0~12.9 GHz,同时具有3.3~3.8 GHz和5.2~5.8 GHz双陷波,平均增益约为4.5 dB,并具有稳定的准全向性辐射特性.该天线能够满足多种超宽带通信系统的应用要求.  相似文献   

16.
针对传统带阻单元构成滤波器存在陷波深度不足和阻带抑制较差的问题,提出一种加载开路枝节的多陷波超宽带滤波器。基于开路枝节线和阶跃阻抗谐振器理论,通过在超宽带滤波器多模谐振器上引入一对折叠开路枝节线产生2个陷波频段,这种特殊枝节实现的陷波抑制能力更强;在超宽带结构下方耦合阶跃阻抗谐振器产生第3个陷波频段,陷波深度更好。最终实现超宽带带通滤波器的中心频率为6.6 GHz,陷波频段相对带宽约为134%。仿真与实测结果表明,该滤波器工作带宽为2.2~11.2 GHz,实现了2.8~4.4 GHz,6.2~6.8 GHz和8.8~9.8 GHz 3个频段的陷波特性,可有效滤除C波段和WLAN频段信号对超宽带通信系统的干扰。满足超宽带系统对陷波滤波器插入损耗和带外抑制的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号