首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为提高有机朗肯循环在回收中低温余热领域的效率,建立固定换热面积的蒸发器离散模型,分析变压力比、冷凝温度、蒸发温度和工质质量流率对有机朗肯循环性能的影响。研究结果表明:当蒸发温度和压力比一定时,存在不同的最佳冷凝温度使系统总效率和循环效率最高,其值分别可达8.95%和7.20%;当冷凝温度一定时,系统总效率随蒸发温度升高而增加;系统总效率与工质质量流率变化规律一致;而除在蒸发温度变化工况下,冷却水温度对系统总效率的影响不超过0.23%。  相似文献   

2.
车辆在道路运行过程中,其发动机基本处于动态变工况运行状态,排气流量和温度呈现出强烈的瞬变特征,揭示有机朗肯循环余热回收系统在瞬变热源条件下的动态效应是其实现车用化的关键.基于柴油机有机朗肯循环余热回收系统的试验平台和仿真平台,首先讨论了有机朗肯循环系统在小时间尺度上的瞬态响应特征.研究发现,蒸发器的传热惯性是有机朗肯循环系统阶跃响应的主导特征,可用1阶惯性方程建模,同时受到相变边界移动、蒸发压力与温度耦合作用的影响.其次,研究了有机朗肯循环系统在大时间尺度上的道路运行特征,从宏观层面揭示了有机朗肯循环系统的综合能效与循环工况的关联关系.结果表明,循环工况的平均车速越高,怠速次数越少,则朗肯循环系统的有效做功时间越多,且蒸发压力和蒸气温度的控制效果越好,进而系统的综合能效就越高.  相似文献   

3.
针对现有压缩天然气(CNG)降压过程中冷能浪费较大的问题,提出使用低温有机朗肯循环系统回收CNG冷能。通过建立低温有机朗肯循环系统模型,探究循环蒸发温度、冷凝温度以及冷、热源温度等参数对系统性能的影响。研究结果表明:系统净输出功和系统热效率随蒸发温度的上升而增加,且存在1个最优蒸发温度使系统?效率达到最大;系统净输出功随冷凝温度的升高存在1个峰值,系统热效率和?效率均随冷凝温度的升高而降低;提高热源温度和降低冷源温度可以有效提高系统净输出功和系统热效率,但过高的热源温度和过低的冷源温度将导致?损失增大,进而降低系统?效率,同时也对系统设备提出了更高的要求。  相似文献   

4.
为了提高低温余热动力回收系统的吸收驱动力和增强蒸发器抗低温腐蚀的能力,提出了三压力氨水吸收式动力循环(3p-AWPC).在卡列纳循环的基础上,添加了一个预热器,以分离器出口的稀溶液加热来自高压氨泵的工作溶液.采用Schulz方程、质量与能量守恒定律,对循环倍率、工作成分、基本成分、热源温度和冷源温度进行优化分析,研究工作浓度与基本浓度最佳配对关系.给出了在热源温度为200℃及冷却水温度为25℃条件下,3p-AWPC方案的热力性能优化算例.结果表明,动力回收效率为9.62%,比相同冷热源进口参数条件下水蒸气朗肯循环(SRC)的动力回收效率约增加16.5%.  相似文献   

5.
有机朗肯循环系统利用低沸点的有机物作为工质推动透平做功,在低品位热能的利用方面更有优势.循环工质的选择是影响有机朗肯循环系统性能的关键因素之一.本文针对集热温度120℃,蒸发温度在100℃以下的低温太阳能有机朗肯循环系统进行了工质的研究分析,选择R245fa,R123,R236fa,R113,R245ca,R600,R601 7种工质,以工质的热效率、火用效率及系统不可逆损失为评价指标,利用Matlab和PERPROP软件对候选工质的各热力参数进行了比较.结果表明:低温太阳能有机朗肯循环发电系统的选用R123作为循环工质时具有较高的热效率和火用效率,且系统总不可逆损失较低,适合作为蒸发温度100℃以下的低温有机朗肯循环系统的循环工质.  相似文献   

6.
采用R123为工质,以热风炉产生的烟气模拟工业炉排放的烟气作为实验热源,通过设计和搭建基于有机朗肯循环的余热发电系统实验台,研究膨胀机输出功率、系统热效率以及效率随系统状态参数的变化规律。实验结果表明:膨胀机输出功率随蒸发压力和热源温度的升高而增大,实验条件下的最大输出功率为645 W。系统热效率随工质蒸发压力的升高而增大,最大热效率为8.5%。系统效率随蒸发压力和热源温度的升高而增大,实验条件下的最大效率为3.5%。工质过热度的提高不利于提升系统的综合性能。  相似文献   

7.
提出和研究了一种可根据用户所需调节比例的功/冷联供卡林纳循环系统.在三压力卡林纳循环基础上增加了一条由发生精馏塔、冷凝器、蒸发器和过冷器组成的制冷子回路,与锅炉和透平组成的动力回路相并联.新增制冷回路将锅炉出口热源进一步利用后提供额外制冷量,从而提升整个循环的综合性能.制冷蒸发器中的蒸发压力由循环基本溶液浓度所决定,因此制冷温度可以保持在较低水平(-25~-5℃).研究结果表明,在烟气热源、冷却水进口温度分别为350和32℃的条件下,系统取工作浓度0.54及对应的最小分流比0.53时,循环性能最佳,其综合动力回收效率可达23.41%,比相同条件下优化后的常规三压力卡林纳循环及氨水朗肯循环的动力回收效率分别提高了17.28%和43.18%.  相似文献   

8.
利用Aspen HYSYS软件模拟非共沸混合物有机朗肯循环回收利用压气站烟气余热;综合考虑循环工质环保性、安全性、临界温度与热源温度的匹配性等性能,选取苯、甲苯与R141b和R123分别混合作为循环工质;提出以一段时间内的平均净输出功为优化目标,对比苯/R141b、苯/R123、甲苯/R141b和甲苯/R123作为循环...  相似文献   

9.
建立了150~350℃中低温余热蒸汽低沸点有机工质联合循环(S-ORC)发电系统数学模型.比较了相同热源条件下,水蒸气朗肯循环(SRC)、有机朗肯循环(ORC)及S-ORC三种发电系统的热效率、效率、运行压力、发电量.结果表明:150~210℃热源条件下,ORC有着最高的热效率、效率和发电量;210~350℃热源条件下,S-ORC的各项性能有优势,其热效率和效率均高于SRC和ORC发电系统.  相似文献   

10.
根据卡林纳循环发电效率高及氨水朗肯循环蒸发过程和冷凝过程都有较大温度变化的特点,提出了一种在非供暖季利用卡林纳循环发电而在供暖季利用氨水朗肯循环排热加热供暖水的卡林纳循环与氨水朗肯循环(AWKRC)组合系统.AWKRC组合系统在卡林纳循环基础上通过阀门切换实现循环流程转换.研究分析了AWKRC组合系统在非供暖季的发电性能和供暖季的热电联供性能,分析了氨水朗肯循环工作浓度对循环效率的影响.在给定计算条件下,非供暖季卡林纳循环的热效率和动力回收效率分别为20.9%和17.4%;而在供暖季氨水朗肯循环的热效率和动力回收效率分别为17.0%和13.0%,且其综合回收效率可达19.2%.  相似文献   

11.
图集的统一协调,对图集质量有很大影响。本文是作者在编制北京市农业区划地图集的实践基础上,根据地图信息传输论的观点,对农业区划地图集的统一协调的内容及方法进行了探讨。试图总结编制这类图集的统一协调模式,以供读者编图时参考。  相似文献   

12.
研究了国家法的抽象正义观与民间法的情理正义观,认为西方国家法的抽象正义观与东方民间法的情理正义观存在实质的不同,原因在于思维方式、超验与经验传统、政治结构的差别。在现代法治理念下,传统民间法所代表的正义观将向混合正义观转型,西方法治所代表的国家法抽象正义观是其骨架。  相似文献   

13.
给出了一维非自治时滞系统点态退化的一个例子,拓宽了该领域的研究。  相似文献   

14.
利用对位异构体的对称性由核磁共振氢谱测定了工业十二烷基苯在硝硫混酸中的硝化选择性,发现一硝化产物中对位异构体的比例为75% ̄80%。以月桂酸和苯为原料,经氯化、酰化和还原合成了正十二烷基苯。在同样条件下研究了正十二烷基苯的硝化,由核磁共振氢谱和气相色谱分析,发现一硝化产物中对位异构体的比例仅为60%。根据空间位阻效应,对结果进行了讨论,并与甲苯,乙苯,异丙苯等短链烷基苯的硝化结果进行了比较。  相似文献   

15.
YBCO掺杂效应研究   总被引:3,自引:0,他引:3  
介绍了YBCO掺杂的基础知识,总结了YBCO各个位置采用典型元素掺杂而导致的超导电性和结构的变化,阐述了掺杂对YBCO的重要影响,并简介了当前YBCO掺杂效应研究中的几个热点问题.  相似文献   

16.
由于有限群的Lagrange定理的逆不成立,因此,n较大时要确定n次交代群An的所有子群或对An阶数的每一个正因数,确定是否存在这个阶数的子群是较困难的问题.文章通过对5-循环置换各次方幂的计算及其研究,构造出了A5的5个12阶子集,并证明了每一个子集都是A5的12阶子群,最后对A5的部分阶的子群做了总结.  相似文献   

17.
18.
为了找出诱发高频机组基础不良振动的原因,从基础计算模型方面对基础激励与响应进行了分析,以两个高频机组基础为动测实例,经模态分析得出钢筋混凝土构架式基础竖向1阶振动与电机产生共振;应用功率谱法对动力机组及基础平台进行动测,得出平台异常响应频率66Hz为水泵工作频率,调整机器的工作频率可避开不良振源影响,达到明显的减振效果。由此而知,动力机器基础出现不良振动时,不可盲目改变结构的动力特性,应在机器不同工况比如:停机、起机及正常转速下,对机器及基础进行动测并对振动信号进行比较分析,以制定出行之有效的减振方法。  相似文献   

19.
报告鸡法氏囊病的流行状况,主要症状,剖检情况及诊断,提出了综合性防治措施。  相似文献   

20.
基于“前沿分支”的观点研究了圈幂补图的树宽,首先确定了它的树宽下界,又给出了达到此下界的标号,从而得到了它的树宽表达式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号