首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将氧化石墨烯(GO)改性,得到了氨基化改性的氧化石墨烯.再将氨基化改性的氧化石墨烯(GO)与TiO_2复合,制备了氨基改性的氧化石墨烯(GO)与TiO_2复合材料.用所制备的复合材料在可见光照射下,去除溶液中的氨氮,分别考察了不同因素对氨氮去除效率的影响.  相似文献   

2.
采用改进的Hummers法制备氧化石墨烯(GO),利用SEM、TEM、AFM观察GO表面形貌,XRD、Raman、FT-IR表征GO分子结构,通过MH-3型显微硬度仪测试GO/UHMWPE复合材料的显微硬度。结果表明:制备的GO为二维片状结构,厚度约1.1nm;GO的衍射峰为10.8°;G峰和D峰分别出现在1 590cm-1和1 350cm-1附近;GO含有氧官能团;随着GO含量的增加,GO/UHMWPE复合材料的显微硬度也随之增加。  相似文献   

3.
分别以氧化石墨烯(GO)和改性氧化石墨烯(iGO)为添加物,通过溶液混合的方法制备了氧化石墨烯/聚酰亚胺(GO/PI)和改性氧化石墨烯/聚酰亚胺(iGO/PI)复合膜,采用傅里叶变换红外光谱仪、扫描电子显微镜、电子万能试验机、热机械分析仪对复合膜的结构与性能进行分析.结果表明:iGO/PI复合膜的相容性及拉伸力学性能均高于GO/PI复合膜;GO的加入使GO/PI复合膜的玻璃化温度较纯PI膜升高,而iGO使iGO/PI复合膜的玻璃化温度较纯PI膜降低.  相似文献   

4.
将石墨烯分散液浸渍到氧化锆基体中,利用微波烧结法制备石墨烯/氧化锆陶瓷复合材料,提高了氧化锆陶瓷的润湿性.首先,通过优化球磨机的工艺参数(球料比、转速、研磨时间),制备出粒径为200.3 nm的石墨烯分散液,然后通过X射线衍射仪(X-ray diffraction,XRD)、Raman光谱仪、透射电子显微镜(transmission electron microscope, TEM)分析了石墨烯的微观结构,最后分析了石墨烯/氧化锆陶瓷复合材料的润湿性.结果表明,石墨烯分散液能够长时间存放,且具备较好的单层或少层片状结构,添加石墨烯能够明显提高氧化锆陶瓷的润湿性,使氧化锆陶瓷润湿角减小,表面能增加,润湿性能变好.  相似文献   

5.
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/E54-DDS)复合材料,利用差示扫描量热(DSC)分析、动态热机械分析(DMTA)、超声波C扫描等研究了GO对复合材料的热固化性能、凝胶工艺性能、动态热机械性能以及抗冲击损伤性能的影响.结果表明:GO结构中的羟基和羧基会促进改性树脂体系的固化反应,加快GO/E54-DDS的固化反应进程.在GO添加量(质量分数)小于0.5%时,GO的活性基团可增加改性树脂体系的交联密度,从而提高复合材料的玻璃化转变温度;但GO添加量大于0.8%时,会因DDS在固化网络结构中比例的大幅下降,反而降低复合材料的玻璃化转变温度.微观形貌分析显示GO/CF/E54-DDS预浸料比CF/E54-DDS预浸料表现出更好的浸润效果.CF/E54-DDS复合材料被破坏后CF表面光洁,破坏主要发生在CF与树脂基体的界面;而GO/CF/E54-DDS复合材料被破坏后,CF表面紧密黏附着GO/E54-DDS固化物,破坏主要发生在CF织物层间的GO/E54-DDS区域.冲击后压缩强度测试表明GO的存在提高了GO/CF/E54-DDS复合材料抵抗横向裂纹和纵向裂纹扩展的能力,减小了复合材料的损伤投影面积和裂纹凹坑深度,提高了冲击后压缩强度.  相似文献   

6.
以Hummers法制备氧化石墨,超声剥离得到氧化石墨烯(graphene oxide,GO)。在25℃和90℃两种温度下,以聚乙烯亚胺(polyethyleneimine,PEI)为GO的还原剂和修饰剂,制备了PEI改性石墨烯分散液。光电子能谱和红外光谱揭示了温度对PEI还原GO反应的影响。研究结果表明:25℃时,PEI具有部分还原GO的能力,得到PEI修饰的氧化石墨烯(PEI-GO);90℃时,接枝的PEI逐渐从GO片层上解离,并将GO还原为表面修饰的石墨烯(PEI-RGO)。将石墨烯分散液抽滤组装为PEI-RGO薄膜,发现其电导率为117 S·m~(-1),有望用于石墨烯导电材料。  相似文献   

7.
采用醋酸乙烯酯(VAc)和甲基丙烯酸异辛酯(EHMA)原位聚合法包覆玻璃纤维(GF),制备了共聚物改性玻璃纤维GF/VAc-g-EHMA,将其填充到超高分子量聚乙烯(UHMWPE)中制备复合材料.考察了GF与改性单体质量比、GF长径比、偶联剂及GF填充量对填充UHMWPE复合材料机械性能的影响.选用长径比为4.8∶1~5.3∶1的GF,并以KH550预处理,以单体质量∶GF质量=1∶4比例进行原位聚合,所得的改性GF再按10%填充量加入UHMWPE时,所得复合材料性能较好.此时材料的拉伸强度为31.3MPa,断裂伸长率为435%,质量磨耗率低于0.14%.SEM观察表明,树脂和GF的结合较好.  相似文献   

8.
以含可交联基团的磺化聚醚醚酮(SPEEK)为基体材料,通过分别添加一定比例的氧化石墨烯(GO)和磺化石墨烯(SGO)制备了SPEEK/GO及SPEEK/SGO复合膜,并通过各种性能测试对其进行了对比研究.结果表明:与纯SPEEK膜相比,SPEEK/GO及SPEEK/SGO复合膜具有更优异的热稳定性能;其阻醇性、质子传导...  相似文献   

9.
对氧化石墨烯进行改性,利用微波水热法制备Fe3 O4/石墨烯,以提高氧化石墨烯的疏水性,并用聚乙烯亚胺(PEI)对Fe3 O4/石墨烯进行表面改性,获得一种PEI改性的磁性石墨烯复合材料.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶红外光谱(FTIR)及热重分析(TGA)等手段...  相似文献   

10.
通过制备氧化石墨烯/聚吡咯/四氧化三铅(GO/PPy/Pb3O4)复合材料,用于构建电化学传感器,以实现对对苯二酚的电化学检测。通过利用π-π共轭效应,实现吡咯单体在氧化石墨烯表面的原位聚合。以GO/PPy纳米复合材料为基底,通过水热反应制备得到具有微/纳结构的GO/PPy/Pb3O4复合材料。以扫描电镜(SEM),傅里叶红外(FTIR)和X射线衍射(XRD)等对复合材料进行表征,用差分脉冲伏安法研究对苯二酚在修饰电极上的电化学行为。通过对比不同修饰电极的电化学传感性能,发现GO/PPy/Pb3O4修饰电极展示了良好的导电性和优异的电催化性能。结果表明,该电化学传感器在1.0~35 μg/L范围内与其氧化峰电流呈良好的线性关系,其检测限为0.3 μg/L。此外,该电化学传感器还具有良好的重现性和稳定性。  相似文献   

11.
通过恒电流法电沉积分别制备了氧化石墨烯/聚吡咯(GO/PPy)复合材料修饰碳毡(CF)阳极和还原氧化石墨烯/聚吡咯(r GO/PPy)复合材料修饰碳毡阳极.通过循环伏安法和交流阻抗法对电极特性进行考察.将其分别应用到微生物燃料电池中,对其产电性能进行研究.结果表明,相比r GO/PPy-CF电极,氧化石墨烯以掺杂方式加入到聚吡咯中,一步电聚合制备的GO/PPy-CF电极,其电极性能更为优异,且作为MFC阳极时,对电池的产电性能提升更大.该电极制备方法简单,无需使用强还原剂,是一种有效环保的MFC阳极制备方法.  相似文献   

12.
通过原位聚合非二次掺杂制备了高导电性聚苯胺/氧化石墨烯复合材料.采用盐酸为掺杂酸,研究了聚苯胺/氧化石墨烯的微观形貌;探讨了盐酸浓度及氧化石墨烯(GO)用量对反应过程和复合材料导电性的影响.结果表明:聚苯胺(PANI)以球状物的形式均匀地包覆在GO表面;盐酸浓度超过0.5 mol·L-1,反应诱导期明显缩短,复合材料的导电性显著提高.在聚合体系中加入GO可延长聚合反应诱导期,但随着GO用量的增加反应诱导期缩短.当盐酸浓度为0.5 mol·L-1,GO与苯胺单体质量比超过2%时,制备的PANI/GO复合材料中GO形成导电通路,电导率较纯PANI提高一个数量级,达到1.4S·cm-1.  相似文献   

13.
利用航空级耐高温环氧树脂(EP)5284作为基体,研究了不同氧基团含量的石墨烯(GR)基材料(GR、还原氧化石墨烯(rGO)、氧化石墨烯(GO))对碳纤维(CF)/EP的热性能、力学性能和电性能的影响.结果表明,GR、rGO和GO均使EP的最大反应放热峰向低温移动,其中以GO对树脂的影响最为显著;同时,GR、rGO和GO的加入均缩短了改性树脂体系达到一定交联程度所需的时间.添加0.2%(质量分数,下同)的rGO和GO对复合材料的玻璃化转变温度有明显的提高,但同样添加0.2%GR未提高复合材料的玻璃化转变温度.添加0.2%GR和0.2%rGO后均降低了复合材料的层间剪切强度,而添加0.2%GO则使复合材料的层间剪切强度提高了约10%.添加0.2%的GR、rGO和GO对CF/EP复合材料的导电性能均有改善作用,其电导率分别为CF/EP的4倍、5.29倍和2.88倍.复合材料的微观形貌分析表明,GO与CF、EP具有更好的相容性,GO在复合材料中与CF、EP形成了结合更为紧密、有效的界面,GR与CF、EP的相容性相对较差,而rGO居中.三者之中,GO有效提高了CF/EP复合材料的层间剪切性能和玻璃化转变温度,但对导电性能而言,rGO的改善作用最为显著.  相似文献   

14.
采用优化的Hummers法制备氧化石墨烯(GO),利用硅烷偶联剂KH550对其进行改性,得到改性氧化石墨烯(KH550-GO);将其与蒙脱土(MMT)复合成二元填料添加到甲基乙烯基硅橡胶(MVQ)中,得到了KH550-GO/MMT/MVQ复合材料.研究了KH550-GO和MMT的纳米片层复合现象以及KH550-GO/MMT二元填料的添加对复合材料力学性能和阻燃性能的影响.结果表明:在超声后的水溶液中,KH550-GO和完全剥离的MMT可以形成复合纳米片层结构;与纯MVQ相比,添加质量分数为5%的KH550-GO/MMT(质量比为3∶2)后复合材料的拉伸强度提高到1.83MPa,极限氧指数(LOI)从30.8%提高到38.5%,残炭率提高了7个百分点,炭层结构更加致密.  相似文献   

15.
纳米SiO2改性UHMWPE性能的研究   总被引:3,自引:1,他引:3  
文中研究了纳米SiO2填充改性超高相对分子质量聚乙烯(UHMWPE)塑料的耐热性能。结果表明:在UHMWPE中添加少量经偶联剂表面处理的纳米SiO2对材料的耐热性能有较显著影响。用DSC法研究了UHMWPE/纳米SiO2复合材料在不同纳米粒子含量时的熔融结晶行为。纳米SiO2的加入,起到了结晶成核剂作用。通过偏光显微镜观察了复合材料结晶结构,同时和纯UHMWPE进行了比较。发现较低含量纳米SiO2在UHMWPE中有成核作用,使UHMWPE以异相成核方式结晶,UHMWPE的结晶度提高,球晶颗粒变小。  相似文献   

16.
以层状石墨为原料制备了氧化石墨烯(GO),将其引入到聚乙烯醇(PVA)基体中,得到GO/PVA复合材料。借助X射线衍射分析和差示扫描量热分析表征了复合材料的结晶性能,使用气体渗透测试仪分析了复合材料的氢气阻隔性能。分析结果表明:当GO质量分数低于0.5%时,片层结构的GO导致PVA的结晶度增加;当GO质量分数大于0.5%时,PVA的结晶度降低。复合材料的氢气阻隔性能受到GO添加量和PVA结晶度的协同影响。  相似文献   

17.
聚酰亚胺(polyimide,PI)具有优异的热稳定性、机械性能、电学性能和化学稳定性。石墨烯(Graphene,G)具有优良的物理和化学特性,是一种良好的复合材料的增强材料。将石墨烯及其衍生物纳米片填充到聚酰亚胺材料中,制备复合材料,能很大程度提升聚酰亚胺复合材料的性能(力学、热力学、电学等性能),以满足随着高新科技的发展带来产品制造对材料性能的要求。综述了近年来国内外有关石墨烯及其衍生物改性聚酰亚胺制备复合材料的研究进展,重点阐述了石墨烯的制备及改性方法、复合材料的制备方法及性能,最后对复合材料的发展趋势和应用前景进行了展望。  相似文献   

18.
利用高分子聚合物壳聚糖链上富含的氨基修饰石墨烯,制备了具有独特性质的石墨烯基纳米复合材料,并利用壳聚糖对金纳米粒子良好的保护作用,使金纳米粒子固载到石墨烯纳米复合材料的表面,合成了一种具有生物相容性的金纳米粒子/氧化石墨烯纳米复合材料.同时,利用UV-vis、FT-IR、Zeta电位仪、XRD粉末衍射仪、TEM等对所制备石墨烯基纳米复合材料进行了表征.结果表明,PEI/GO/GC,AuNPs/PEI/GO/GC修饰电极对H2O2具有更好的电化学催化性能.  相似文献   

19.
利用新型碳材料还原氧化石墨稀对TiO_2进行改性,以期提高TiO_2的光催化活性.采用溶剂热法,以氧化石墨烯(GO)和钛酸四丁酯(Ti(OBu)4)为原料,成功制备了不同还原氧化石墨烯含量的RGO/TiO_2纳米复合材料.运用XRD、TEM、FT-IR和UV-vis等手段研究了复合材料的性质,同时以甲基橙(Methyl Orange,MO)为模型,评价了不同反应条件下制备的复合物的光催化性能,讨论了不同还原氧化石墨烯含量、催化时间等对复合物的光催化性能的影响.在甲基橙评价模型基础上,将制得的具有最佳光催化性能的RGO/TiO_2复合材料进行致病大肠杆菌的抗菌实验,以此来检验RGO/TiO_2纳米复合材料的抗菌效果.实验结果表明,采用溶剂热法在180℃下煅烧6h制得RGO/TiO_2纳米复合材料,锐钛矿相TiO_2通过C-O-Ti键均匀地分布在片层还原氧化石墨烯载体上.RGO/TiO_2复合材料对甲基橙溶液的降解率明显高于纯纳米TiO_2.当制备复合材料时GO的初始投加量为40mg时,制得的RGO/TiO_2复合材料对甲基橙的降解率达到50%.同时,该RGO/TiO_2纳米复合材料对致病大肠杆菌有明显的抗菌作用.  相似文献   

20.
采用改进后的Hummer法制备氧化石墨烯(GO),混酸法纯化单壁碳纳米管(SWCNTs),真空抽滤法制备GO/SWCNTs复合材料分子筛膜.通过透射电镜(TEM)、扫描电镜(SEM),X射线衍射仪(XRD)、热重分析(TGA)对复合膜材料组成、结构、形貌、性能等进行表征;其对混合气体(CO_2、N_2、CO)中CO_2和N_2的分离性能进行了研究.结果表明:制备的GO/SWCNTs分子筛膜中单壁碳纳米管成功嵌插到氧化石墨烯表面与片层之间,起到骨架支撑作用;混合气体中CO_2、N_2、CO的渗透系数最大分别达到1 976、1 897、149 Barrer,各组分气体分离系数为:α(CO_2/N_2)值7.2、α(N_2/CO)值32.8、α(CO_2/CO)值37.表现出良好的CO_2和N_2分离性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号