共查询到20条相似文献,搜索用时 15 毫秒
1.
企业知识图谱是针对金融领域为描述企业间商业往来关系而构建的一类垂直领域知识库.尽管垂直领域知识图谱在领域覆盖的广度上不如开放知识图谱,但是它对知识准确率的要求却远远高于开放知识图谱,因此虽然近些年开放知识图谱取得了很大的进展,但在垂直领域中却并未得到深入应用,尤其是商业领域,其对企业知识图谱提出了很大的需求.针对企业知识图谱目前在关系抽取效果上的局限性,在分析了实体关系抽取研究现状的基础上,提出了一种基于分类的中文实体关系抽取方法.该方法使用最大熵模型,通过对上市公司公报数据进行实验分析,从而寻找到该关系抽取的最优特征模板,并使在企业公报这一数据集上的准确率普遍达到85%以上. 相似文献
2.
在构建中文基础教育知识图谱过程中,使用远程监督的方法能够有效解决训练语料匮乏的问题,同时使用神经网络模型能够提升构建过程中关系抽取的准确率.为了缓解远程监督中引入的错误标签带来的影响,模型通过双向门限循环单元(bidirectional gated recurrent unit)获取双向上下文中的语义信息,同时引入句子... 相似文献
3.
传统实体关系抽取方法中存在错误传播、实体冗余等问题,食品文本语料中存在主实体对应多个关系的特点,针对此情况,提出一种面向互联网食品文本领域的实体关系联合抽取方法。采用序列标注标签和实体关系匹配规则,将实体关系抽取任务转化为序列标注问题;引入基于位置感知的领域词注意力机制的字词双维度语义编码向量,增强文本的语义表征;在对句子进行字词双维度表示的基础上结合双向长短期记忆网络(bi-directional long short-term memory, BiLSTM)和条件随机场(conditional random field, CRF)构建了序列标注模型(position attention-bidirectional encoder representation from transformer, PA-BERT),实现实体关系联合抽取。对比实验证明,提出的实体关系联合抽取模型在食品数据集上的准确率比常用深度神经网络模型高出6%~11%,在食品文本实体关系抽取中是有效性的。 相似文献
4.
《青海师范大学学报(自然科学版)》2019,(4)
该文采用基于卷积神经网络的实体关系抽取方法,以新疆旅游领域为研究实体进行实体关系抽取研究.本研究方法针对新疆旅游领域,采用自行开发设计的语料标注系统,对语料进行过滤、标注操作及人工校正,建立了新疆旅游领域的小型关系语料库,总结使用了17种实体关系对.并将训练语料转化为向量特征矩阵,进行特征提取,结合领域特征,减少对于人工的依赖性,从而训练分类器输出结果,实现旅游领域的实体关系抽取. 相似文献
5.
为解决数控(computer numerical control, CNC)机床设计知识图谱构建过程中关键实体的抽取问题,制定了数控机床领域知识分类标准和标注策略,构建了领域数据集,并提出了一种基于RoBERTa(robustly optimized BERT pretraining approach)的数控机床设计知识实体识别方法。首先,利用数控机床领域数据集对RoBERTa模型进行微调,再利用RoBERTa对文本编码,生成向量表示;其次,采用双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络提取向量特征;最后,利用条件随机场(conditional random field, CRF)推理出最优结果,进而为实体打上标签。实验结果表明:模型在数据集上的F1值为86.139%;对多数关键实体的F1值大于85%;相比其他模型提升2%~18%。可见该方法在数控机床设计知识实体识别中具有明显优势,能够识别机床设计知识文本包含的关键实体,为数控机床设计知识图谱构建提供了数据基础。 相似文献
6.
提出一种基于模式匹配与命名实体识别相结合的领域答案抽取方法,该方法用答案模式串、答案模式权值和答案类型三要素来定义并构建答案模式库,结合旅游领域命名实体识别方法和模式匹配方法,实现了旅游领域实体答案的抽取.在旅游领域进行实体答案抽取实验,取得了较好的效果,其中召回率达88.78%,准确率达86.04%. 相似文献
7.
《南京理工大学学报(自然科学版)》2021,45(1)
涉案新闻重叠实体关系抽取对于构建案件知识图谱有着重要意义。传统的方法通过定位关系指示符来抽取重叠实体关系,在涉案新闻中,预测罪名的关键词可以作为定位关系指示符的重要依据。该文提出一种联合罪名预测的涉案新闻重叠实体关系抽取方法。预测罪名,将罪名向量融入到关系分类和实体标签分类的状态向量中,实现重叠实体关系抽取。为了缓解因联合罪名预测而给重叠实体关系抽取带来的错误传播问题,引入一种分层级联强化学习机制,将整个过程分解为罪名预测层和重叠实体关系抽取层,利用罪名指导重叠实体关系抽取,帮助重叠实体关系抽取层优化强化学习策略。将重叠实体关系抽取结果反馈给罪名预测层帮助罪名预测层优化强化学习策略。试验表明:该文提出的模型相比基线模型的F1指标提升了4%。 相似文献
8.
为了提高实体关系联合抽取的效果,提出一种端到端的联合抽取模型(HSL).HSL模型采取一种新的标记方案,将实体和关系的联合抽取转化成序列标注问题,同时采用分层的序列标注方式来解决三元组重叠问题.实验证明,HSL模型能有效地解决三元组重叠问题,在军事语料数据集上F1值达到80.84%,在公开的WebNLG数据集上F1值达... 相似文献
9.
知识图谱的构建对于信息检索、智能问答、智能推荐等下游工作具有重要意义,而抽取资料中的信息是构建知识图谱的关键。为了实现有效知识抽取,提出了一个基于深度主动学习的实体关系联合抽取框架。在该框架下,基于深度主动学习的采样方法降低文本标注成本,改进的EDA数据增强方法(EDA-RE)解决样本间的关系分类不均衡、标注资料不足等问题,“BIO-OVE/R-HT”的标注策略和ChineseBERT-BiLSTM-CRF(CBBC)联合抽取模型解决传统流水线模型存在误差累积和无法抽取重叠关系等问题。通过百度竞赛提供的数据集进行实验,验证了框架中各方法的有效性。 相似文献
10.
针对关系抽取任务中文本特征提取不充分及核心词表现弱的问题,提出了一种多特征注意力卷积神经网络的实体关系抽取方法.利用位置、词性及实体标签作为输入特征,充分捕获文本信息,构建注意力模型,获得单词与目标实体之间的相关性,并将注意力机制与卷积神经网络相融合以进行关系预测.以新疆旅游领域为研究对象,总结归纳15种实体关系.采用... 相似文献
11.
从非结构化文本中抽取给定实体的属性及属性值,将属性抽取看作是一个序列标注问题.为避免人工标注训练语料,充分利用百度百科信息框(Infobox)已有的结构化内容,对非结构化文本回标自动产生训练数据.在得到训练语料后,结合中文特点,选取多维度特征训练序列标注模型,并利用上下文信息进一步提高系统性能,进而在非结构化文本中抽取出实体的属性及属性值.实验结果表明:该方法在百度百科多个类别中均有效;同时,该方法可以直接扩展到类似的非结构化文本中抽取属性. 相似文献
12.
实体关系抽取是信息抽取领域的一项关键技术,在知识库自动构建、问答系统等领域有着极为重要的意义.远程监督关系抽取技术利用大型知识库(Knowledge Base,KB)自动对语料进行标注,但存在噪声过大的问题.前人提出的注意力模型中利用实体对的向量表示相减得到关系语义表示,进而使用关系表示来达到降噪的效果,然而同一实体对... 相似文献
13.
中文嵌套命名实体关系抽取研究 总被引:1,自引:0,他引:1
为了解决嵌套命名实体关系抽取研究缺乏相关语料库这一问题, 在现有中文命名实体语料库的基础上, 将人工标注与机器学习相结合来抽取其语义关系。人工标注一个中文嵌套命名实体关系语料库, 然后分别采用支持向量机和卷积神经网络等方法, 进行中文嵌套实体关系抽取实验。实验结果表明, 在人工标注实体的中文嵌套命名实体语料上, 嵌套实体关系抽取的性能非常好, F1指数达到95%以上, 而在自动识别实体上的抽取性能尚不理想。 相似文献
14.
针对武器装备领域复杂实体的特点, 提出一种融合多特征后挂载武器装备领域知识的复杂命名实体识别方法。首先, 使用BERT 模型对武器装备领域数据进行预训练, 得到数据向量, 使用Word2Vec模型学习郑码、五笔、拼音和笔画的上下位特征, 获取特征向量。然后, 将数据向量与特征向量融合, 利用Bi-LSTM模型进行编码, 使用CRF解码得到标签序列。最后, 基于武器装备领域知识, 对标签序列进行复杂实体的触发检测, 完成复杂命名实体识别。使用环球军事网数据作为语料进行实验, 分析不同的特征组合、不同神经网络模型下的识别效果, 并提出适用于评价复杂命名实体识别结果的计算方法。实验结果表明, 提出的挂载领域知识且融合多特征的武器装备复杂命名实体识别方法的F1值达到95.37%, 优于现有方法。 相似文献
15.
对共同担保、交叉持股、关联交易等多元关系和事件时序进行表示是金融领域知识表示的重要需求,但目前的知识图谱表示机制以二元关系为基础,且没有建立恰当的金融知识时序表示和推理机制。为解决以上两个问题,文章以OWL(Web Ontology Language)语义框架为基础,研发了一套针对金融领域知识的时序超图表示模型。同时,在保证对现有金融知识的兼容性基础上,通过定义金融领域时序和多元关系的推理规则并扩展现有推理机,实现了多元时序金融超图的自动构建。实验表明,金融时序超图对于表示金融知识和事件具有通用性和灵活性,且本文模型检索时间仅为传统二元模型的5%左右。 相似文献
16.
在大规模文本语料库上预先训练的BERT等神经语言表示模型可以很好地从纯文本中捕获丰富的语义信息.但在进行中文命名实体识别任务时,由于中文命名实体存在结构复杂、形式多样、一词多义等问题,导致中文命名实体识别效果不佳.考虑到知识图谱可以提供丰富的结构化知识事实,从而更好地进行语言理解,提出了一种融合知识图谱信息的中文命名实... 相似文献
17.
在大规模文本语料库上预先训练的BERT(bidirectional encoder representation from transformers,BERT)等神经语言表示模型可以较好地从纯文本中捕获丰富的语义信息.但在进行中文命名实体识别任务时,由于命名实体存在结构复杂、形式多样、一词多义等问题,识别效果不佳.基于... 相似文献
18.
与现有的根据知识图谱的结构信息或实体属性特征进行相似度匹配的实体对齐的方法不同,提出了一种基于表示学习的知识图谱实体对齐方法.首先,在低维向量空间下,通过机器学习方法学得实体和关系的语义表示,这种表示形式蕴含了知识图谱的内在结构信息及实体属性特征;其次,将人工标注的实体对作为先验知识,学习知识图谱间实体对的映射关系.经实验验证表明:与基于特征匹配的方法SiGMa相比,本文方法能够有效提高知识图谱实体对齐的精确率,同时保持较高的F1值. 相似文献
19.
文档级实体关系抽取的主要任务是提取文档中实体之间的关系.相较于句内实体关系提取,文档级实体关系抽取需要对文档中多个句子进行推理.为了解决文档中不同实体之间的复杂信息交互问题,提出一个混合提及级图MMLG (Mixed Mention-Level Graph)策略,用于拟合文档中不同实体之间的复杂信息交互,提高模型对于文档级实体关系的感知能力.此外,为了应对实体关系中存在的关系重叠问题,构建了实体关系图ERG (Entity Relation Graph)模块,该模块融合了路径推理机制,主要针对实体间的多个关系路径进行推理学习,更准确地识别提及级节点实体及关系.通过将MMLG策略与ERG模块聚合到实体关系抽取模型中,构建BoBGSAL-Net (Based on Bipartite Graph Structure Aggregate Logic Network)模型,并在公开数据集DocRED和作者实验室构建的数据集AlSiaRED上开展实验,结果证明BoBGSAL-Net在文档级实体关系抽取任务中性能得到提升,其中BoBGSAL-Net+BERT模型在AlSiaRED数据集上的关系抽取... 相似文献
20.
针对Web同一对象内部信息组件之间的空间距离小于不同对象之间信息组件之间的距离这一显示特征.提出一种新的Web对象抽取方法.通过分析给定页面中不同实体间的空间位置关系来判断哪些信息成分属于同一对象,与Web文档的表示无关.通过Web页的文档对象模型(DOM)获得不同信息成分之间的位置关系,进而判断这些信息组件是否属于同一对象.实验结果表明,该方法对于多个领域中不同结构的Web文档具有很好的适应性.对于设计结构规则,含有多个数据对象的页面,抽取结果的准确率可以达到100%. 相似文献