共查询到20条相似文献,搜索用时 15 毫秒
1.
《东北师大学报(自然科学版)》2020,(1)
针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷积网络,用于加快特征提取;其次,增加子网络中卷积核的个数,以增强网络区分不同交通标志的能力;最后,添加激活函数ReLU,增加Dropout层,以达到加快函数收敛,避免CNN过度拟合,降低神经元间互适应的效果.实验结果表明:与传统的系统结构相比,ILN-CNN对交通标志的识别准确率达到93.558%;比BP神经网络模型、支持向量机分类算法分别提高了12.206%和4.018%,并且在识别时间上具有一定的优势. 相似文献
2.
传统的车牌识别算法包括模板匹配、特征统计等方法,但是这些算法依赖于人工提取图像特征,识别准确率低。卷积神经网络LeNet-5算法能够自动提取车牌图像的特征,提高车牌识别准确率。但是目前基于LeNet-5网络结构的车牌识别算法存在识别不完整,运算时间长等缺点。提出基于改进的LeNet-5网络的车牌识别算法,该算法将输入车牌字符图像归一化为32×16大小,并通过删除传统LeNet-5网络中的C5层、修改输出层中神经元个数等,将车牌字符按照汉字和数字/字母的形式识别输出。通过采集大量车牌数据进行训练验证,结果表明:与前人改进的LeNet-5网络结构相比,本文算法在识别率和时间效率上均得到了提高。 相似文献
3.
针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输入批量样本进行规范化处理;同时改用性能更好的Relu激活函数,并使用全局池化层代替全连接层,合理改变卷积核的大小和数目。研究结果表明,改进LeNet-5网络能够有效解决过拟合和梯度消失等问题,具有较好的鲁棒性;网络识别率达到98. 5%以上,相比CNN (convolutional neural network)+SVM (support vector machine)提高了约5%,比传统的LeNet-5网络提高了3%。可见,改进后的LeNet-5网络图像识别的准确率得到显著提高。 相似文献
4.
《天津大学学报(自然科学与工程技术版)》2020,(8)
手写体中文的自动识别是中文文档数字化的前提和基础,由于中文字符数目繁多、相似性强、字体种类繁多、书写随意、缺乏统一规范等原因,一直是计算机视觉领域中一个具有挑战性的问题.为解决这一难题,提出了一种基于卷积神经网络的手写体中文识别方法.在经典LeNet-5网络模型的基础上进行改进,提出了一种LeNet-Ⅱ模型.利用改进的Inception模块和空洞卷积,设计了一种并行的双路卷积神经网络结构;两路分支可分别提取手写中文图像中不同尺度的特征,获得多个尺度的特征图像;通过对其进行特征融合,可以达到丰富特征图像多样性、提升识别准确率的目的;最后经过全连接层进行分类.利用经典手写体中文数据集进行训练,利用该模型实现了3 755类手写体中文字符及相关文本的自动识别.实验结果表明,基于改进LeNet-5模型的手写体中文识别方法,在同一训练数据集上的收敛速度和识别准确率明显优于经典LeNet-5模型,对经典数据集的识别准确率可以达到95.21%,也高于其他传统算法;此外,对4幅手写体中文文本的平均识别准确率达到97.30%,超出了人类表现,取得了理想的实际效果. 相似文献
5.
在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆芯燃料组件编码字符水下图像的增强。为了提高编码识别效果,提出了一种整合LeNet-5网络和支持向量机(SVM)的模型,在网络中添加BN(Batch Normalization)层与Dropout层来加速网络的运行速度,并改进Sigmoid函数,增加函数的平滑性,以此来减少梯度消失。实验表明,在自定义数据集上的验证准确率为99.82%,识别率为100%,相比于其他模型有显著的提升。 相似文献
6.
针对复杂场景下交通标志检测存在精度低、检测速度慢等问题,提出一种基于YOLOv3改进的S-YOLO(stronger-YOLO)交通标志算法。首先,合并批归一化层到卷积层,以提升模型前向推理速度;其次,采用二分K-means聚类算法,确定适合交通标志的先验框;然后引入空间金字塔池化模块,提取特征图深度特征;最后引入完整-交并比(complete-IoU,CIoU)回归损失函数,提升模型检测精度。实验结果表明,在重制的中国交通标志数据集(Chinese traffic sign dataset,CTSDB)下,所提算法与YOLOv3相比,平均准确率和检测速度分别提升了4.26%和15.19%,同时相较YOLOv4以及其他算法对交通标志识别有更优的精度和速度,具有良好的鲁棒性,满足复杂场景高效实时检测。 相似文献
7.
准确检测交通标志已成为自动驾驶不可或缺的任务之一。基于现实场景中小而密集的交通标志,传统方式检测交通标志存在精度较低这一缺陷。针对此问题,提出一种融合RepVGG模块的改进YOLOv5的交通标志识别算法。首先将原算法的部分CBS模块替换为RepVGG模块,加强特征提取能力。并在Neck层融合CBAM注意力机制,强化检测模型的抗干扰能力。最后,在网络训练过程中,使用EIOU损失函数来弥补GIOU损失函数的不足,提高算法的检测精度与迭代速度。实验结果表明,改进后的YOLOv5算法,迭代速度更快,在CCTSDB交通标志数据集上的P、R、mAP值分别达到91.55%、85.04%、91.71%,相比YOLOv5算法能够更好的应用到实践当中。 相似文献
8.
《云南大学学报(自然科学版)》2016,(2)
以真实场景中拍摄的街景门牌号码图像数据集SVHN为研究对象,将卷积神经网络与支持向量机相结合,提出了一种基于改进LeNet-5的街景门牌号码快速识别方法.该方法首先对数据进行图像增强预处理,突出有效特征;然后,省去基本LeNet-5中的第3卷积层,并用SVM分类器代替最后输出层中的Softmax分类器,以简化网络结构的同时提高分类效率.在国际公开的SVHN数据集的实验结果表明,改进LeNet-5可以有效识别街景门牌号码,7h便可训练得出结构稳定的网络识别模型,识别率达到90.35%,提高了算法的综合效率. 相似文献
9.
智能交通系统(ITS)是当前研究的热点,而在ITS中的关键技术之一就是交通标志的特征提取技术.针对交通标志的特征提取,提出利用尺度不变特征变换(SIFT)算法提取交通标志的点特征,采取最小距离分类器对特征向量进行分类,并通过Matlab、仿真验证实验结果,结果表明能够较好地检测出交通标志的特征. 相似文献
10.
针对计算机辅助乳腺疾病诊断方法准确率低、耗时长等问题,提出一种基于改进的卷积神经网络(CNN)的乳腺疾病诊断方法.该方法从以下3个方面做了改进:(1)设计双通道卷积神经网络来解决单通道特征提取不充分的问题;(2)采用Dropout技术有效地防止过拟合现象;(3)采用支持向量机(SVM)代替传统的Softmax分类器以减少运算量,提高运算速度.测试结果表明:所提出的分类模型平均准确率高达92.31%,平均训练时间为968s,充分验证了该方法的有效性. 相似文献
11.
基于人工蜂群的新型圆形交通标志识别算法 总被引:1,自引:0,他引:1
道路交通标志检测是智能交通系统的重要组成部分,精确快速识别圆形交通标志对保障交通安全有非常关键的作用.本文将子种群概念引入人工蜂群(artificialbeecolony,ABC)算法中,提出了一种基于子种群多峰值优化算法(species-based artificial bee colony,SABC)应用于圆形交通标志的检测.SABC的关键在于多个子种群按照人工蜂群算法同时搜索多个最优解.作为比较,引入了基于子种群的遗传算法(species-basedgeneticalgorithm,SGA)和基于子种群的粒子群优化算法(species-based particle swarm optimization,SPSO).5个多峰值函数用于验证3种算法的多峰值优化性能,其结果证明SABC具有更高的准确性和更快的运行速度,成功率为100%,精度均低于10-4,运行时间均在0.3 s以内.然后,将多圆检测视为多峰值优化问题,并将SABC应用于多圆检测,设计了完整的检测算法.最后,在德国交通标志数据集(German traffic sign recognition benchmarks,GTSRB)的圆形交通标志上测试所提出的圆形检测算法.实验结果表明,所提算法能够以良好的性能定位圆形交通标志. 相似文献
12.
针对汽车前置摄像头所拍路况实景中的远距离交通标志占整个画面的比例较小、自动检测较难的问题,本文提出一种改进YOLOv3的卷积神经网络结构.在原YOLOv3算法结构上去掉了13×13这个冗余的大感受野检测层,结合残差结构思想,将深层特征进行上采样,然后与浅层特征图进行张量拼接,得到104×104的尺度检测层,进一步提高对... 相似文献
13.
14.
《齐齐哈尔大学学报(自然科学版)》2017,(5)
以MATLAB的Simulink和计算机视觉工具箱为基础,分析了其在交通标志识别中的应用。交通标志识别系统采用Simulink模块进行搭建。系统由视频输入、检测识别和视频显示模块构成。视频输入模块对采集视频中的视频帧进行颜色空间转换,检测识别模块通过函数编写来实现当前图像与模板库标志对比来识别交通标志。为验证系统的有效性,通过对行车记录仪视频进行实验,实验结果表明,系统可以对交通标志进行有效识别,实时性和鲁棒性较好。 相似文献
15.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。 相似文献
16.
《齐齐哈尔大学学报(自然科学版)》2017,(5)
以MATLAB的Simulink和计算机视觉工具箱为基础,分析了其在交通标志识别中的应用。交通标志识别系统采用Simulink模块进行搭建。系统由视频输入、检测识别和视频显示模块构成。视频输入模块对采集视频中的视频帧进行颜色空间转换,检测识别模块通过函数编写来实现当前图像与模板库标志对比来识别交通标志。为验证系统的有效性,通过对行车记录仪视频进行实验,实验结果表明,系统可以对交通标志进行有效识别,实时性和鲁棒性较好。 相似文献
17.
针对目标识别过程中识别精度不高、实时性不好的问题,提出基于尺度不变特征转换(SIFT)算法的改进算法,该算法通过研究传统的SIFT算法特征匹配正确率不高、匹配耗时过长的问题,结合Harris算子角点检测特性提出改进,在高斯差分尺度空间内直接检测角点,使得提取的特征点数目减少,计算量降低,特征点提取的显著性提高;同时使用RANSANC方法进行特征匹配约束,减少误匹配,进一步提升目标识别的正确率。为了验证提出算法的有效性,通过MATLAB对算法在尺度变化和噪声等复杂情况下的匹配效果进行实验验证,结果表明,改进的SIFT算法匹配用时大大降低、误匹配较少,匹配正确率提高,具有较强的鲁棒性,可以准确识别目标,具有良好的目标识别能力。 相似文献
18.
针对直接集成简单分类器对交通标志数据库进行识别出现的类别预测效果较差的问题,提出一种基于卷积神经网络(CNN)和Bagging集成学习的交通标志识别算法,采用爬虫和图像增强技术实现交通标志数据集的扩充,以CNN网络提取交通标志图像的特征,通过采用最大池化层实现图像数据下采样,采用较浅的网络深度以简化整体网络结构。在CNN网络特征提取的基础上,利用软投票机制对多项Logistic、K近邻、SVM个体学习器进行集成,实现较准确的交通标志识别。实验结果表明,该算法在TSRD交通标志识别数据库测试集上的识别准确率达到了93.00%,相对于未改进的卷积神经网络模型识别准确率提高了11.99个百分点,并较高于通过VGG16和ResNet50迁移学习实现的识别准确率,具有较快的收敛速度。 相似文献
19.
针对卷积神经网络在交通标志识别实时性不好,对设备硬件要求过高的缺点,提出了一种具有实时性,高精度的基于轻量型卷积神经网络的改进网络。一方面引入深度可分离卷积和激活函数Mish,加快网络的训练和识别速度,降低对硬件设备的要求;另一方面通过对网络架构及层次的改进,同时合理改变卷积核的大小和数目,加强图片特征的表达与传递。在BelgiumTSC交通标志数据集上的实验结果表明,改进后网络明显提高了网络训练速度,同时识别精度也略高于原网络,验证了改进方法的有效性。通过与其他模型相比,该模型能够更快速准确完成交通标志识别任务,验证了该方法的可行性。 相似文献
20.
针对自然场景中交通标志识别问题涉及的识别准确率和实时性改善需求,提出了一种改进的基于多尺度卷积神经网络(CNN)的交通标志识别算法.首先,通过图像增强方法比选实验,采用限制对比度自适应直方图均衡化方法作为图像预处理方法,以改善图像质量.然后,提出一种多尺度CNN模型,用于提取交通标志图像的全局特征和局部特征.进而,将组合后的多尺度特征送入全连接SoftMax分类器,实现交通标志识别.采用德国交通标志基准数据库(GTSRB)测试了所提算法的有效性,测试结果表明,算法在GTSRB基准数据集上获得98.82%的识别准确率以及每幅图像0.1ms的识别速度,本文算法具有一定的先进性. 相似文献