首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张昊  李擎 《科学技术与工程》2023,23(19):8264-8272
为解决高速转向过程中,微型货车容易侧翻的问题,提出一种前馈反馈-史密斯预估-模型预测控制结合差动制动的防侧翻控制方法。首先建立三自由度车辆模型,得到纵向速度、横摆角速度、簧载滚转角的实际值,并与Carsim得到的理论值相减得到状态偏差,接着以车辆的归一化的零力矩点横向偏移为预警指标,设计模型预测控制(model predictive control, MPC)控制器计算附加横摆力矩,通过差动制动方法分配制动力矩,最终实现车辆防侧翻。通过Carsim和MATLAB/Simulink联合仿真,进行车辆转弯运动实验。实验结果表明,该控制方法可以有效提升微型货车在高速转向过程的稳定性,提高微型货车的安全性。  相似文献   

2.
针对装有线控机械制动系统的车辆的制动稳定性控制问题,在MATLAB/Simulink中建立七自由度车辆动力学模型及线控机械制动系统模型,提出一种兼顾制动效能与横摆稳定性协调控制的车辆制动力分配策略;该策略采用分层控制结构,运用滑模控制和模糊控制理论设计顶层控制器,主要负责纵向目标制动力及横向目标横摆力矩的求取;底层控制器运用二次规划方法,以轮胎利用率为目标优化函数,使用有效集算法求解目标函数,在车辆制动时完成目标纵向力与横摆力矩协调分配,进而达到横、纵向协调最优控制的目的;运用MATLAB/Simulink与Carsim在对开路面上进行改变制动意图的工况联合仿真。结果表明,所提出的车辆制动力分配策略能够在保证车辆制动效能的前提下同时满足车辆横摆稳定性控制要求。  相似文献   

3.
为了深入研究驾驶人在应急制动行为下车辆的纵向响应问题,建立了车辆应急制动响应动力学模型;通过驾驶人应急制动行为下车辆纵向应急响应实车试验,完成驾驶人制动操作力度与车辆纵向响应等关键数据的采集,对比分析实车试验数据与响应动力学计算数据;研究结果表明:利用制动踏板位移描述驾驶人的应急操作力度更加准确,并且建立的车辆应急制动响应动力学模型数据误差较小,车辆制动应急响应计算模型70%的数据的相对误差在10%以内,最大相对误差为18.71%。  相似文献   

4.
基于模型预测控制理论,从提高车辆极限工况稳定性角度,研究车辆纵向和侧向运动的水平集成控制及纵向、侧向和垂向的全局集成控制.确定了分层集成控制结构,设计了转向/制动模型预测控制器和主动悬架控制器.采用单轮规则制动分配法,实现了车辆底盘转向/制动的水平集成控制和转向/制动/悬架的全局集成控制,并通过仿真实验对算法进行验证.结果表明:集成控制能有效提高车辆极限工况的稳定性和主动安全性.  相似文献   

5.
首先建立了车辆制动过程数学模型,利用该数学模型对JS2310农用运输车的制动性能进行了计算机仿真,并与试验结果进行了比较,表明模型是正确的为进一步提高该车辆制动性能预测的精度,引入了神经网络技术使用BP网络对不同条件下的多次仿真结果进行第一步学习,将数学模型转化为车辆制动性能预测的神经网络模型,再进一步使用整车部分试验结果对已得到的神经网络进行训练,得到最终的预测模型结果表明使用神经网络模型可以提高车辆制动性能预测的精度  相似文献   

6.
针对现有自动驾驶研究大多忽略路面摩擦性能的问题,制备了5种不同级配的沥青混合料车辙板试件,基于Persson表面分形摩擦理论和轮胎?路面三维有限元模型,求解沥青路面的动摩擦系数和附着系数,表征其摩擦性能,并使用Matlab/Simulink软件建立自动驾驶汽车的动力学控制模块,根据车辆期望制动减速度和道路摩擦性能逆向反推求解轮缸的制动压力值,实现自动驾驶汽车的制动过程。使用CarSim软件和Matlab/Simulink进行联合仿真,设定了下坡制动和曲线制动工况,分析了纵向坡度、弯道半径和道路超高等影响因素对自动驾驶车辆制动效能的影响。  相似文献   

7.
空气动力制动制动风翼纵向位置制动力规律   总被引:4,自引:1,他引:3  
分析了全列车均装制动风翼时,不同纵向位置处制动风翼周围流场特性,数值计算得到迎风面第1块制动风翼产生的制动力最大,其余制动风翼产生的制动力逐渐减小,且减小幅度逐渐减慢的制动力规律.结合某高速列车车型,考虑减少受电弓影响,分析受电弓车辆不装制动风翼时,纵向位置各制动风翼产生制动力规律,并同每辆车均安装制动风翼时制动力规律进行对比.最后,对空气动力制动产生制动力效果进行了分析.  相似文献   

8.
通过理论推导、经验公式总结和参数测定等方法得到用于HIL的车辆系统数学模型,其中包括7自由度四轮车辆制动动力学模型、液压回路模型、制动器模型、Dugoff轮胎模型和ABS控制模型,并在MATLAB/Simulink环境下进行建模与仿真.将液压制动回路、压力调节器和控制器以实物形式嵌入仿真系统,在dSPACE系统平台下对所建车辆系统模型进行ABS HIL仿真试验.试验结果表明,通过在线参数调整确定逻辑门限值,采用ABS实车道路,所建车辆系统模型是合理的.  相似文献   

9.
提出了一种无压力闭环的差动制动实现车道偏离辅助的控制方法.根据车辆和驾驶员参考模型确定纠正车道偏离所需的目标横摆角速度.采用滑模算法设计横摆角速度跟踪控制器,确定附加横摆力矩.基于纵向滑移率均衡设计车轮制动压力调节策略,限制车轮最大滑移率,以提高车辆横向稳定性.设计模糊控制器对压力建立过程进行伺服控制.在Carsim/Labview-RT联合仿真平台上对提出的方法进行硬件在环仿真试验,试验结果表明,所提出方法能有效避免车辆偏离车道,鲁棒性强,且车辆横向稳定性好.  相似文献   

10.
BP神经网络在车辆制动性能预测中的应用   总被引:1,自引:0,他引:1  
首先建立了车辆制动过程数学模型,利用该数学模型对JS2310农用运输车的制动性能进行了计算机仿真,并与试验结果进行了比较,表明模型是正确的。为进一步提高该车辆制动性能预测的精度,引入了神经网络技术。使用BP网络对不同条件下的多次仿真结果进行第一步学习,将数学模型转化为车辆制动性能预测的神经网络模型,再进一步使用整车部分试验结果对已得到的神经网络进行训练,得到最终的预测模型。结果表明使用神经网络模型可以提高车辆制动性能预测的精度。  相似文献   

11.
车辆采用ABS系统进行制动控制时,对制动压力响应能力提出了较高要求.当车辆制动管道较长时,管道内制动液体压力传递特性是影响这一能力的重要因素.由于制动管道内存在高频压力变化,对ABS制动管道压力传递的研究不适宜用集中参数模型,而应采用分布式管道参数模型.通过建立包含14个变量组成的制动系统仿真模型,可计算获得特定制动管道压力传递频域特性解.通过对频域特性解的辨识可进一步获得精确的管道压力传递函数表达式.利用传递函数表达式对具有不同参数的制动系统阶跃响应特性进行对比,发现制动液温度和制动管径的变化对管道的压力传递能力影响显著.车辆制动系统控制逻辑应根据管道参数的变化进行调整.  相似文献   

12.
针对制动工况中的汽车,建立9自由度车辆动力学模型,并基于车辆动力学模型,采用比例-积分(PI)稳定性控制逻辑算法对车辆的行驶状况及运动姿态进行控制.最后,利用CarSim和MATLAB/Simulink联合仿真平台,结合低附着系数路面和对开路面的紧急制动工况进行离线仿真.仿真结果表明:采用稳定性控制逻辑算法可以改善车辆的纵向运动状态,有效地抑制车辆的侧向运动,有助于提高车辆的稳定性.  相似文献   

13.
针对分布式电驱动汽车,以实现车辆主动安全性同时兼顾制动能量回收为目标,提出一种主动前轮转向(AFS)与电液复合制动集成的控制策略.AFS控制器采用滑模变结构控制,滑移率控制器采用滑模极值搜索算法,基于分层结构(上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电机与液压复合执行器),并考虑位置与速率约束.转向制动时,考虑车辆纵向动力学对侧向动力学的影响,引入前轮转角对滑移率控制律进行了修正.在MATLAB/Simulink中建立七自由度整车模型,对控制算法进行了验证.结果表明:分离路面直线制动时,所提出的控制策略可以同时保证制动能量回收和制动方向稳定性;转弯制动时,可以更好地跟踪理想横摆角速度,提高了车辆的侧向稳定性.  相似文献   

14.
为避免车辆行车制动系统失效后用驻车制动系统制动时的后轮抱死甩尾等危险工况,对EPB应急制动时的防抱死控制策略进行研究.通过分析EPB的构成及工作原理明确基于EPB系统是可以实现后轮防抱死控制功能.通过对EPB执行器的结构、参数以及工作特性分析并进行台架实验来确定执行器零部件的特性,根据其特性确定执行器的控制方式,从而编写了EPB在应急制动时的控制软件.同时在装备了EPB的试验车辆上对控制策略进行了试验验证.   相似文献   

15.
提出辅助制动系统进行汽车稳定性控制试验,运用Matlab/Simulink搭建辅助制动系统与实车系统的动力学关联仿真系统.以车辆运动轨迹和车辆质心侧偏角表征车辆状态,采用制动驱动集成稳定性控制策略,分别对实车系统和装有辅助制动系统的试验系统在不足转向、过多转向两种试验工况下稳定性控制性能进行分析和验证.进而以辅助制动系统验证车辆稳定性控制的有效性,在没有ESP控制或ESP控制系统失效时能有效辅助车辆行驶;在有ESP控制系统时行驶稳定性控制性能与实车系统在两种试验工况下均具有显著的一致性.同时,辅助制动系统作为汽车行驶稳定性控制试验装置其设计是科学的、可行的.  相似文献   

16.
汽车自适应巡航控制主动制动实现方法   总被引:1,自引:1,他引:0  
探讨主动制动控制系统在汽车自适应巡航控制中的作用.对主动制动采用基于加速度的控制方案,给出了主动制动系统的硬件组成.为了实现期望加速度跟随控制,在理论和试验的基础上建立了用于求解期望制动压力的车辆制动逆动力学模型.利用改进的PID算法开发了制动压力控制器.实车试验证明,制动压力和加速度控制效果都达到了自适应巡航系统对主动制动控制的要求.  相似文献   

17.
智能化制动试验系统的核心是建立不同编组列车首车制动压力控制模型。从气动力学方程入手,建立了不同编组列车首车列车管充排气特性数学模型,该模型考虑了编组列车除首车之外的其余车辆充排气特性对首车列车管气压变化的影响。提出通过对制动阀有效截面积的设计计算,并带入所建立的数学模型中进行仿真试验,从而对研制新制动阀以及改进或检修制动阀提供理论基础与技术指导。利用列车制动试验台得到的试验数据与仿真结果进行对比分析,验证模型的准确性,并预测了更长编组列车首车列车管的初充气及常用制动时的气压数据。  相似文献   

18.
为了提高自适应巡航系统的鲁棒性和对复杂跟车环境的适用性,提出一种基于模型预测控制(model predictive control,MPC)的自适应巡航系统分层控制策略。上层控制策略主要考虑速度控制模式和距离控制模式之间的切换,下层控制策略则基于MPC理论而提出,确定汽车加速、减速或保持当前车速,以提升系统跟随性。在Carsim软件中选取有防抱死制动系统的C级掀背车,实时模拟两车(前车和本车)跟随的运行过程。在MATLAB/Simulink中建立纵向运动学模型,运用MPC控制策略对车辆的跟车工况进行联合仿真。结果表明,我们设计的MPC控制器与PID(proportional-integral-derivative,比例-积分-微分)控制器相比,在跟车工况下本车的加速度峰差值仅为1.65 m/s~2,加速度变化均值降低约23%,提高了驾驶的舒适性和行驶的稳定性;同时车间距误差范围控制在-0.5~7.3 m,均值误差降低约12%,在实际跟车环境中,能有效减少追尾、加塞等情况的发生。  相似文献   

19.
制动意图识别作为新型线控制动系统控制的先决条件,其识别结果的优劣直接影响车辆控制系统的精度,进而影响特定工况下的车辆行车安全性,因此为了提高车辆的主动安全性,提升车辆的制动性能,针对车辆动力学中的纵向稳定性控制问题,以制动意图为切入点,介绍了目前制动意图的分类,概述了基于制动意图识别的车辆动力学控制的国内外研究现状;结合制动意图识别特征的选取问题,重点对比分析了几种典型的制动意图识别方法,包括模糊推理系统、神经网络、自适应神经模糊推理系统、隐马尔可夫模型和聚类分析;结合当下研究现状指出了合理选取特征参数、转换输出目标、多标准评价体系是面向车辆动力学控制的制动意图识别的研究重点和方向。  相似文献   

20.
针对重型汽车研究了横摆稳定性差动制动模糊控制方法,以横摆角速度和质心侧偏角为控制目标,利用差动制动产生适当的横摆力矩,提高车辆的横摆稳定性。根据具体车型建立了重型汽车的虚拟样机整车模型,并利用Matlab/Simulink搭建了差动制动模糊控制系统,通过ADAMS-Matlab联合仿真分析了不同车速、制动减速度、路面附着系数和转弯半径下的车辆响应。结果显示,应用差动制动模糊控制方法,在各种工况下均能使车辆的横摆角速度、质心侧偏角和侧向加速度明显减小,且制动减速度、转弯半径越大控制效果越明显,在低路面附着系数下也能达到明显的控制效果,表明该方法可有效提高重型汽车在转向操纵下的横摆稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号