首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了二氧化钛纳米管(TNTs)/三吡啶钌(Ru(bpy)32+)纳米复合物,用Nafion分散后修饰到玻碳电极上,制备成一种新型的电化学发光(ECL)传感器.分析并确定了电解质和pH是影响该传感器ECL的重要因素.探讨了电活性物质Ru(bpy)32+和乙二胺四乙酸(EDTA)的发光反应机理,并利用制备的传感器研究了低浓度下的铅离子对Ru(bpy)32+-EDTA体系发光强度的抑制作用.实验表明:该体系发光强度的变化值与铅离子浓度在5.048×10-7~4.603×10-5mol/L范围内呈现良好的线性关系,检测限可达1.0×10-5mol/L,具有检测铅离子含量的潜在应用价值.  相似文献   

2.
纳米金(AuNPs)与联吡啶钌(Ru(bpy)_3~(2+))通过静电作用形成AuNPs@Ru(bpy)_3~(2+)纳米复合物.将该复合物组装在氧化石墨烯(GO)纳米片上,形成了可用于电化学发光检测的基底材料GO-AuNPs@Ru(bpy)_3~(2+).利用链霉亲和素(SA)分子可与4个生物素(biotin)分子相结合且二者的亲和力高的特点,再与识别元素相结合,实现了信号的放大.基于以上两点,利用适配体构建了无标记型适配体传感器,实现了癌胚抗原的灵敏检测.传感器的线性范围在1.0fg/L~10.0pg/L之间,检出限为0.4fg/L.将该方法成功应用于人血清样品中癌胚抗原的测定,RSDs不大于8.3%,回收率在80.0%~108.0%之间.  相似文献   

3.
用染料Ru(bpy)2(NCS)2对ITO/TiO2/PbS复合半导体纳米多孔膜电极进行敏化,用光电化学方法研究ITO/TiO2/PbS/Ru(bpy)2(NCS)2电极的光电化学行为及组成光电池的能量转换效率.结果表明,该电极作为太阳能电池光阳极的能量转换效率与TiO2/PbS 复合半导体中PbS的含量有关.  相似文献   

4.
纳米金修饰电极和探针载体的DNA电化学发光分析方法研究   总被引:1,自引:0,他引:1  
提出以纳米金修饰电极和以纳米金粒子作DNA探针载体的电化学发光检测DNA新方法.首先将纳米金自组装在金电极上,再将含巯基的目标ss-DNA固定于纳米金修饰的电极上,然后与以纳米金粒子作载体的电化学发光DNA探针进行杂交反应,将此电极做工作电极,在含有三丙胺的溶液中进行电化学发光测量.在选定实验条件下,检测囊肿纤维DNA片断(20 base)的线性范围为1.0×10-12~1.0×10-9mol/L,相关系数为0.9954,检出限为5.0×10-13mol/L.实验结果表明,纳米金具有较大的比表面积,可增强DNA在电极上的固定量,从而增强电化学发光检测信号,提高方法的灵敏度.  相似文献   

5.
在玻碳电极(GCE)表面依次电聚合硫堇(PTh)膜、电沉积普鲁士蓝包金纳米粒子(PB@Au)、电沉积纳米金粒子(Au NPs),利用Au NPs大的比表面积和良好的生物相容性,进而固定双链DNA(dsDNA),制备一种电流型DNA传感器(GCE/PTh/PB@Au/Au NPs/dsDNA).利用电化学交流阻抗技术(EIS)和循环伏安法(CV)对dsDNA修饰电极进行表征,以亚甲基蓝(MB)为杂交指示剂,利用微分脉冲伏安法(DPV)对Pb2+对DNA的损伤进行了检测.结果表明,利用所制备的GCE/PTh/PB@Au/Au NPs/dsDNA可以高灵敏地测定铅金属离子对dsDNA损伤的程度,在2545℃温度范围内,Pb2+对DNA的损伤速度随着温度升高而加快,Pb2+浓度越大对DNA的损伤越严重,即使微量的Pb2+对DNA也有明显的损伤.所制备的传感器灵敏准确,可用于其他重金属离子的检测以及基因损伤的研究.  相似文献   

6.
应用计时库仑法、循环伏安法、微分脉冲伏安法、荧光光谱和扫描电镜等方法研究了组蛋白(His)、[Ru(bpy)2(dppz)]2+(bpy=2,2'-联吡啶,dppz=邻联二吡啶[3,2-a:2',3'-c]吩嗪)和多壁碳纳米管(MWCNTs)在铟锡氧化物(ITO)电极上的电化学共沉积.结果表明,His能促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积(1.2 V vs.Ag/Ag Cl),所获得的复合膜呈现2对由表面电化学过程控制的氧化还原峰;通过研究His质量浓度和p H对复合膜中Ru(III)/Ru(II)氧化还原反应的影响,阐明了His作为媒介体调控[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上共沉积的机理.在优化的条件下,复合物中[Ru(bpy)2(dppz)]2+发生氧化的电量在0.01~0.2mg/L和0.2~5.0 mg/L区间内与His质量浓度呈线性关系,其线性回归方程分别为ΔQ=3.24(±0.27)×10-6+2.95(±0.09)×10-4CHis(R=0.993)和ΔQ=5.92(±0.25)×10-5+6.26(±0.62)×10-6CHis(R=0.998).该研究建立的方法可应用于具有良好氧化还原性能的无机生物纳米复合材料的制备及蛋白质的固定与检测.  相似文献   

7.
毛细管电泳电化学发光联用技术具有分离效率高、分析速度快、线性范围宽、灵敏度高、试剂消耗少等优点而在分析领域得到广泛的应用。文中概述了基于三联吡啶钌(Ru(bpy)_3~(2+))的毛细管电泳电化学发光联用技术的发展,介绍了该联用技术的检测模式、实验装置及其在心血管类药物、生物碱中的分析应用,同时介绍了该技术在研究药物与蛋白质的相互作用及药代动力学中的应用,并展望了其良好的应用前景。  相似文献   

8.
文章用一步法合成N-N-二甲基甲酰胺(DMF)保护的钯纳米粒子(DMF-Pd NPs),通过紫外可见光谱、透射电镜(TEM)和循环伏安法对钯纳米粒子及其修饰的玻碳电极进行了表征,并将此电极用于铜离子(Cu~(2+))的电化学检测。结果表明:氧化峰电流与Cu~(2+)浓度在4×10-7~5×10-4 mol/L范围内呈良好的线性关系,相关系数为0.999 0,检出限(S/N=3)为5×10-8 mol/L。该方法具有简便、选择性好,对于环境水样中Cu~(2+)的检测具有潜在的应用价值。  相似文献   

9.
钌(Ⅱ)多吡啶配合物具有丰富的光物理与电化学性质,在光化学、光物理、光催化,电化学、电子转移和能量传递、分子识别等研究领域有着广泛的应用.配合物分子识别方面的研究是当今配位化学的研究热点.评述了Ru(bpy)32+配合物及其衍生物的分子识别研究现状及最新进展.主要从pH发光传感器、阳离子识别、阴离子识别、DNA分子识别四个方面进行综述.  相似文献   

10.
研究二茂铁衍生物对Ru(bpy)32+的发光猝灭.按照文献[8-9]合成7种二茂铁衍生物,发现它们对Ru(bpy)32+的发光有明显的猝灭作用,通过Stern-Volmer公式分别求出了它们的猝灭速率常数kg和自由能变△G.研究了它们猝灭Ru(bpy)32+发光过程中的电子转移机理.  相似文献   

11.
应用循环伏安法、微分脉冲伏安法、荧光光谱法和扫描电镜等方法研究了[Co(phen)3]3+(phen=1,10-邻菲咯啉)和单壁碳纳米管(SWCNTs)促进[Ru(bpy)2(tatp)]2+(bpy=2,2'-联吡啶,tatp=1,4,8,9-四氮三联苯)在铟锡氧化物(ITO)电极上对牛血清蛋白(BSA)的电催化氧化.结果表明,[Ru(bpy)2(tatp)]2+、BSA、[Co(phen)3]3+和SWCNTs间相互作用明显,BSA-SWCNTs的加入促进了[Ru(bpy)2(tatp)]2+在ITO上的电化学组装,[Co(phen)3]3+的加入则促进了组装到ITO电极上的[Ru(bpy)2(tatp)]2+对BSA的电催化氧化,在连续微分脉冲伏安图上呈现一个类似于色氨酸电催化氧化的特征氧化峰.通过改变离子强度、Ru(Ⅱ)或Co(Ⅲ)配合物配体结构和BSA浓度的研究发现,增强BSA与双金属键合剂间作用的因素有利于Co(Ⅲ)配合物诱导Ru(Ⅱ)配合物对BSA的电催化氧化.此外,BSA的电催化氧化响应在0.3~1.5μmol/L BSA浓度区呈线性增加变化,Co(Ⅲ)配合物的伏安响应呈线性减小.研究结果有助于理解双金属键合剂对蛋白质的电催化氧化作用,为蛋白质电化学传感器的构建提供强有力的依据.  相似文献   

12.
合成了一种新奇的Ru(Ⅱ)配合物[Ru(bpy)3](dca)I0.5(OH)0.5·3H2O并进行了结构表征,该化合物属于六方晶系,P6/mcc晶胞群,晶格参数为a=1.3505(3)nm,b=1.3505(3)nm,c=2.1263(6)nm,α=90°,β=90°,γ=120°.在该化合物中,配体bpy和OH-离子之间以及dca和结晶水之间都存在较强的氢键作用。  相似文献   

13.
以具有核-壳结构的Au@Si O2纳米颗粒为基底,用二乙基磷酰乙基三乙氧基硅烷(DPTS)和L-胱氨酸(L-Cystine)对其进行功能化修饰制备得二乙基磷酰乙基三乙氧基硅烷和L-胱氨酸功能化纳米金粒子(L-Cys-Au@Si O2-DPTS),利用羧酸根及磷酸根与铅离子形成金属螯合物后,引起纳米粒子的聚集,导致溶液由酒红色变为蓝色,这种颜色的转变可通过肉眼直接识别,从而建立起一种简单,快速且的可用于现场实时检测Pb2+的可视化比色检测的方法。通过优化p H、底物浓度和反应时间等条件后,相较于Ni2+,Co2+,Mn2+等9种金属离子,L-Cys-Au@Si O2-DPTS对Pb2+显示出了极高的选择性。在最优实验条件下,检测Pb2+时,浓度在10-5~10-4mol/L范围内呈现出良好的线性关系(R2=0.9983),最低检测限为3.43×10-8mol/L。  相似文献   

14.
本文指出一些定性分析教材中关于〔Co(NH_3)_6〕~(2+)和〔CO(NH_3)_6〕~(3+)配离子的颜色存在矛盾之说,实验证实〔Co(NH_3)_6〕~(2+)络离子是红色,〔Co(NH_3)_6〕~(3+)为土黄色,而〔Co(NH_3)_5Cl〕~(2+)或〔Co(NH_3)_5H_2O〕~(3+)离子为红色。  相似文献   

15.
合成了一种新奇的Ru(Ⅱ)配合物[Ru(bpy)3](dca)I 05(OH)0.5·3H2O并进行了结构表征.该化合物属于六方晶系,P6/mcc晶胞群.晶格参数为a=1.3505(3)nm,b=1.3505(3)nm,c=2.1263(6)nm,α=90°,β=90°,γ=120°.在该化合物中,配体bpy和OH-离子之间以及dca和结晶水之间都存在较强的氢键作用.  相似文献   

16.
比率型电致化学发光适配体传感器检测目标时可显示两种不同的ECL信号,以往对比率型ECL传感的研究大多基于鲁米诺-过氧化氢(Luminol-H_2O_2)体系。研究设计了一种基于硒化镉量子点(CdSe QDs)和钌联吡啶修饰的钌硅纳米粒子(RuSi@Ru(bpy)_3~(2+)NPs)的双电位比率型ECL适配体传感器,用于卡那霉素超灵敏高选择性检测。分别选取CdSe QDs和RuSi@Ru(bpy)_3~(2+)NPs作为阴极和阳极ECL发光体。通过卡那霉素两条互补的适配体链作为连接CdSe QDs与RuSi@Ru(bpy)_3~(2+)NPs的媒介,通过酰胺偶联反应在玻碳电极表面构建检测卡那霉素传感器。卡那霉素检测浓度范围为1.0 fmol/L~10 pmol/L。线性拟合方程为△I=0.132 lg c+2.133,相关系数为0.999 (c代表卡那霉素浓度,mol/L)。信噪比S/N=3时,检测限(LOD)为0.4 fmol/L。研究结果为两个ECL发光体构建比率型ECL传感器提供了新思路。  相似文献   

17.
本文合成了铕-联吡啶的二元配合物Eu(bpy)2(NO3)3(H2O)2,用元素分析、红外及紫外光谱对配合物进行了表征.采用循环伏安法,研究了用Nafion将Eu(bpy)2(NO3)3(H2O)2修饰于金电极上的电化学发光行为.讨论了介质、pH对该体系电化学发光性质的影响,推测了Eu(bpy)2(NO3)3(H2O)2电化学发光的机理.结果表明:在没有共反应试剂存在的条件下,Eu(bpy)2(NO3)3(H2O)2在pH 8.0的硼砂缓冲溶液中可以产生较强的电化学发光,其发光体可能为Eu*(bpy)2(NO3)3(H2O)2.  相似文献   

18.
合成、表征了2个类似的含有4,5-二氮杂芴的二足配体L1和L2.配体L1和L2分别含有9-(2-羟基)苯亚氨基-4,5-二氮杂芴和9-(4-羟基)苯亚氨基-4,5-二氮杂芴.配体和Ru(bpy)_2Cl_2·2H_2O在2-甲氧基乙醇中回流反应得到相应的钌(Ⅱ)配合物[{Ru(bpy)2}_2(μ2-L1)](PF6)4和[{Ru(bpy)_2}_2(μ2-L2)](PF6)_4.对这2个配合物的紫外-可见吸收光谱、发射光谱和氧化还原性质进行研究.这2个配合物的金属-配体核移跃迁(MLCT)吸收峰在443 nm,发射峰在580 nm.这2个配合物的循环伏安图显示在1.34 V有1个RuⅢ/Ⅱ的可逆氧化峰和3个基于配体的还原峰.  相似文献   

19.
制备了聚苯胺/氯化银修饰的玻碳电极(PANI/Ag Cl/GCE),并用于检测铅离子。结果表明:铅离子在修饰电极上具有良好的电化学响应,用差分脉冲溶出伏安法可对Pb2+进行灵敏检测。研究了p H值、沉积电位和时间等因素对铅离子响应信号的影响。在最佳测定条件下,在0.5~70 nmol/L范围内,铅离子浓度与电化学信号呈线性变化关系,检出限为0.1 nmol/L,回收率在97.9%~100.7%之间,RSD为2.7%~5.4%。本方法简捷、快速灵敏,适于痕量铅含量测定。  相似文献   

20.
用树状分子及炭黑纳米复合材料修饰玻碳电极,并对六价铬Cr(VI)进行电化学测定.采用X射线光电子能谱(XPS)、循环伏安法(CV)、交流阻抗法(EIS)、方波溶出伏安法(SWSV)等方法对修饰电极进行了表征.研究发现多种其他离子如Ni~(2+)、Co~(2+)、Pb~(2+)、Cu~(2+)、Cd~(2+)、NO_3~-、SO_4~(2-)、Cl~-等对六价铬离子的测定没有明显干扰,且Cr(VI)的还原峰电流与Cr(VI)的物质的量浓度在4~60 nmol/L和0.06~500μmol/L范围内呈线性关系,检测限达1 nmol/L.该法具有简便快速,选择性好,线性范围宽,灵敏度高等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号