首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
电极材料是决定超级电容器性能的关键.石墨烯比表面积大、导电性好、具有良好的环境稳定性,但单独作为电极材料时面临着比容量和能量密度欠佳的困境.制备石墨烯复合材料是解决该问题的途径之一,石墨烯二元复合材料已经显示出优于石墨烯的储电性能.三元或多元复合材料在微观尺度、维度和结构上具有更丰富的设计、组合模式,相应地,其电化学性能也有更多的可能性和自身特有的发展空间.文章综述了几类石墨烯三元复合材料的研究进展,比较并探讨了每一类石墨烯三元复合物作为超级电容器电极材料的性能和优点、存在的问题、可能的解决方案及发展趋势.  相似文献   

2.
采用热聚合法制备石墨相氮化碳(g-C_3N_4),超声法制备还原氧化石墨烯/石墨相氮化碳(RGO/g-C_3N_4)二元复合光催化剂,再利用共沉淀法在二元复合光催化剂RGO/g-C_3N_4表面负载AgI,制得g-C_3N_4/RGO/AgI复合光催化剂。运用XRD、SEM、FT-IR、UV-Vis和FTIR等手段对材料进行表征,以罗丹明B(Rh B)作为目标物,用g-C_3N_4/RGO/AgI进行光催化降解实验。结果表明:光照210min后,g-C_3N_4/RGO/AgI光催化剂对Rh B的降解率为96. 52%。相同条件下,RGO/g-C_3N_4和gC_3N_4/AgI对RhB的降解率分别为58. 28%和73. 80%。g-C_3N_4/RGO/AgI复合光催化剂具有优异的光催化性能。  相似文献   

3.
以三聚氰胺和氯化锂为原料,通过两步热聚合法制备了多孔氮化碳。通过扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)、X射线光电子能谱(XPS)等对所制备多孔氮化碳的性能进行了表征,通过氮吸附法对样品的比表面积及孔结构进行了测试分析。结果表明:所制备的多孔氮化碳为石墨相,其比表面积达到了86.7 m2/g,远高于简单热聚合法制备的块状石墨相氮化碳(g-C_3N_4)。对亚甲基蓝的吸附动力学研究表明,g-C_3N_4对水中亚甲基蓝的吸附满足准二级动力学模型,多孔g-C_3N_4的吸附速率和吸附量远高于块状g-C_3N_4。  相似文献   

4.
利用电化学沉积法制备三维石墨烯/氢氧化镍纳米Ni(OH)2/3DGR复合材料,通过扫描电镜对样品进行微观形貌表征;在1.0 mo L/L KOH溶液中利用循环伏安和恒电流充放电等方法对纳米复合材料修饰电极进行电化学性能测试.在2 m A/cm2的电流密度下Ni(OH)2/3DGR的比电容达到43.70 m F/cm2;1000次循环充放电测试表明该复合材料具有较长的使用寿命和稳定性,比电容保持率达到79.3%.因此三维石墨烯/纳米氢氧化镍复合材料可以做为一种很好的超级电容器材料.  相似文献   

5.
以废旧纺织品聚丙烯腈为碳源,在氯化锌-氯化钾熔盐体系一步碳化活化制备超级电容器碳材料.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面分析仪等物理测试方法对材料进行结构、形貌和孔隙表征.并利用电化学工作站在三电极体系下对制备的碳材料进行循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)测试.结果表明,通过在空气中200℃稳定化10 h、氯化锌-氯化钾熔盐体系中800℃下炭化2 h制备的活性炭具有较大的比表面积和发达的孔结构,作为超级电容器电极材料展现出优异的电化学性能.在0. 25 A/g电流密度下最大比电容达319 F/g;在电流密度高达10 A/g下,比电容仍保留62. 7%.经过5 000次充放电循环性能测试,容量保持率可达82. 6%.  相似文献   

6.
金属层状双氢氧化物(LDHs)作为具有赝电容特性的电极材料,以法拉第反应机理为基础进行储能,其特殊的层状结构可以提供高比表面积和反应活性位点,从而实现高比容量,是一种理想的超级电容器电极材料.结合近几年的相关文献报道,综述金属层状双氢氧化物电极材料的机理特性、制备工艺、电化学性能,展望其在超级电容器领域的发展趋势.  相似文献   

7.
作为一种绿色环保的新型储能装置,超级电容器近年来发展迅速,电极材料是决定超级电容器性能与制造成本的最主要因素。碳材料因种类多样、价格廉价并具有较高的比表面积、较高的导电率和非常好的化学稳定性而被作为一种重要的电极材料广泛应用于储能元件中,主要包括活性碳、碳微球、碳纳米管、石墨烯等。碳基超级电容器是以碳材料作为主要电极材料的一类电容器。本文详细介绍了不同碳基电极材料的研究发展状况,以及碳基超级电容器的研究与应用进展。  相似文献   

8.
石墨相氮化碳(g-C_3N_4)具有较好的物理化学稳定性、合适的能带结构和良好的可见光吸收性能,因而在光催化领域得到了广泛关注.作为异相催化剂,高比表面积可以提供较多的反应位点,增加反应物的接触,改善传质,从而促进催化性能的提升.本文综述了高比表面积g-C_3N_4的合成方法,介绍了两种增加g-C_3N_4比表面积的途径:(1)模板法制备多孔g-C_3N_4;(2)剥离法制备薄层g-C_3N_4纳米片.本文对高比面积g-C_3N_4的光催化应用也做了相应的介绍,并对g-C_3N_4的发展前景做了展望.  相似文献   

9.
采用一步法成功制备了氧化锌/石墨相氮化碳(ZnO/g-C_3N_4)复合光催化材料,通过XRD,SEM,TEM,FT-IR和UV-vis DRS对所得样品的微观形貌和吸光特性进行了表征.结果表明,ZnO颗粒均匀分布在片状g-C_3N_4表面上,ZnO/g-C_3N_4最大光吸收边的位置相对于纯相ZnO发生了明显的红移.利用光催化降解甲基橙溶液评估了所得样品的光催化活性,发现ZnO/g-C_3N_4复合材料的光催化效率远高于纯相ZnO和纯相g-C_3N_4,分别达到ZnO的14倍和g-C_3N_4的9倍.复合材料光催化性能得以提升的主要原因有两点:复合样品材料具有比纯相ZnO更大的光吸收范围,提高了太阳光的利用率;ZnO纳米颗粒与g-C_3N_4紧密耦合形成的异质结构有效促进了光生电子-空穴对的分离.  相似文献   

10.
采用Hummers法和水热法,制备石墨烯和碳量子点溶液作为前驱体,然后通过一步煅烧法制得石墨烯-碳量子点复合材料。借助SEM、UV-Vis、FTIR等手段,对样品的形貌和结构进行表征;利用循环伏安法(CV)、差分脉冲伏安法(DPV)及恒流充放电循环测试等,重点考察了样品的电化学性能。结果表明,在石墨烯表面负载碳量子点可增加材料的比表面积并改善其机械性能,由于活性位点的增加,所制石墨烯-碳量子点复合电极具有较好的可逆性及电化学活性;在检测不同浓度双氧水时,复合电极的灵敏度为纯石墨烯电极的1.4倍左右;石墨烯-碳量子点复合材料作为锂离子电池负极使用时,与纯石墨烯材料相比具有更好的循环稳定性,且容量保持率提高了1.67倍。  相似文献   

11.
采用水热法制备Fe2O3+RGO-2复合材料,借助X射线衍射(XRD)、傅里叶红外光谱(IR)、扫描电镜(SEM)等分析手段,对样品的微观样貌组成进行表征,并利用恒流充放电、循环伏安、交流阻抗等电化学测试评价其作为超级电容器电极材料的电化学性能。结果表明:Fe2O3+RGO-2复合材料颗粒分散,尺寸均一,在KOH电解液中存在赝电容效应,电化学阻抗小,成型密度高。当扫描速率在5 mV/s时,其比容量可以达256.11 F/g,经500 th次的恒流充放电之后,材料的比电容保持率高。研究结果有助于推动金属氧化物材料在电极材料上的应用,并对氧化铁/石墨烯复合材料的研究具有借鉴意义。  相似文献   

12.
超级电容器作为一种新型的电化学储能元件,以充放电效率高、循环寿命长等优点引起研究者的大量关注,而电极材料是决定超级电容器性能的一个关键性因素。常见的电极材料主要有:碳材料、金属化合物材料和导电聚合物材料三大类。当它们单独作为超级电容器电极材料时,碳材料展现高功率密度和优异的循环稳定性,但其比电容较低;而金属化合物和导电聚合物材料具有高比电容,但由于它们导电性差,致使其循环稳定性和倍率性能较差。因此,超级电容器电极材料的研究关注点是碳材料与其他材料组成复合材料,以制备出兼具高比电容、良好循环稳定性和倍率性能的超级电容器电极材料。  相似文献   

13.
通过两步法成功将氮掺杂石墨烯量子点(N-doped graphene quantum dots,N-GQDs)与金属有机骨架衍生碳材料(cZIF-8)组合制备出N-GQDs@cZIF-8超级电容器.1 mol/L H_2SO_4电解质中,该电极在0.5 A·g~(-1)电流密度下具有246.6 F·g~(-1)的比容量,在循环8000次时仍然保持83.7%的容量保留率,展现了优异的循环稳定性.同时, NGQDs@cZIF-8超级电容器在104.5 W·kg~(-1)的功率密度下获得了8.2 W·h·kg~(-1)的优异能量存储能力,这样显著的电化学性能主要因其具有高比表面积的三维结构和高赝电容活性的氮掺杂水平(10.13%),使其在超级电容器、锂离子电池等能量存储领域具有潜在的应用前景.  相似文献   

14.
以氧化石墨烯(GO)为原料、硫酸铵((NH_4)_2SO_4)为动态气体模板剂,采用浸渍结合焙烧工艺制备了氮掺杂多孔薄层石墨烯(p-Gr).利用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸附-脱附(N_2adsorption-desorption)等手段对所得材料进行了表征,并考察了不同硫酸铵用量对所制材料电容性能的影响.结果表明,与未活化的石墨烯(Gr)相比(S_(BET)=70.5m~2/g),所制p-Gr-40具有更大的比表面积(S_(BET)=267.3m~2/g)、更为丰富的孔结构以及优异的电化学性能.在三电极超级电容器中,在电流密度为1A/g时,p-Gr-40比电容可达139.2F/g,远远高于Gr(56.5F/g);在对称两电极超级电容器中,在功率密度为160.03W/kg时,p-Gr-40的能量密度为12.98Wh/kg,其比电容在充放电循环10 000圈后仍保持基本不变.这些优异的电化学性能源于其多孔结构及杂原子(如氮)掺杂.  相似文献   

15.
与传统电容器相比,超级电容器具有循环性能优异、大倍率充放电特性好、能快速充放电和环境友好等优点,目前在众多领域中都受到了研究者的关注.超级电容器电极材料主要包括3大类,即碳基电极材料、过渡金属氧化物电极材料及导电聚合物电极材料.鉴于超级电容器具有广阔的应用前景,综述了超级电容器过渡金属氧化物电极材料的研究现状,并对其今后可能的发展方向进行探讨.  相似文献   

16.
以稻草秸秆为原料,在N_2气氛下,采用预碳化-碱活化的方法制备了活性炭材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附等手段进行表征.结果表明,当活化温度为700℃时,制备的活性炭比表面积为2 743 m~2/g.将其用于超级电容器的电极材料显示了较好的性能,当电流密度为5 A/g时,比电容可达到380 F/g,循环充放电1 000次后,比电容值约为首次比电容的85%,具有较好的循环稳定性.  相似文献   

17.
我们以KMnO_4和石墨烯为原料,通过微波法、水热法和乙醇还原法制备了MnO_2/石墨烯复合材料,利用高分辨扫描电子显微镜(SEM)对样品的微观形貌进行了表征分析,并将所得复合材料制备成电极片,组装成超级电容器,采用恒电流充放电(GCD)、循环伏安(CV)、交流阻抗(EIS)在两电极体系下对电极材料进行电化学性能测试。实验结果表明,乙醇还原法所制得复合材料的微观形貌最好,其质量比电容最大可达180.54 F/g。  相似文献   

18.
研究了氮化碳修饰的氧化锌纳米线阵列作为光阳极在光电化学(PEC)电池中的应用。首先采用水热法制备氧化锌纳米线阵列,用二氰二胺制备石墨状氮化碳(g-C_3N_4)和无定形氮化碳(a-C_3N_4)。然后用不同浓度的g-C_3N_4和a-C_3N_4悬浊液修饰氧化锌纳米线阵列。通过SEM、XRD、FT-IR、XPS、UV-Vis等方法表征样品的结构与成分,紫外-可见光吸收光谱表明氧化锌纳米线阵列在可见光区的光吸收强度随着氮化碳悬浊液浓度的增加而提高,并且在相同条件下,a-C_3N_4/ZnO比g-C_3N_4/ZnO在可见光区有更好的吸收。将一系列氮化碳修饰的氧化锌纳米线阵列制作成光阳极器件,并进行光电化学测试,氮化碳的修饰可以使氧化锌纳米线阵列的光电催化性能有显著提高,并且a-C_3N_4/ZnO比g-C_3N_4/ZnO在相同条件下能产生更大的光电流。这些结果表明,氮化碳修饰的氧化锌纳米线阵列有潜力应用于PEC电池领域。  相似文献   

19.
以KOH为活化剂、氧化交联淀粉为原料制备了超级电容器用电极材料.最佳工艺条件是:活化温度850℃,活化保温1.5 h,碱炭质量比为2∶1.在该条件下制备的淀粉活性炭具有较高的比表面积(1 493.9 m2/g)和高比容量(218 F/g).通过氮吸附表征其孔结构.以其作为电极材料组装在模拟超级电容器中进行充放电性能和循环伏安法测试,在300 mg/g KOH水系电解质溶液、较高电流密度下,最佳制备工艺条件下所制备的活性炭表现出较好的电容特性.  相似文献   

20.
超级电容器用活性炭电极的制备及电化学性能研究   总被引:2,自引:0,他引:2  
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号