首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
利用2016年武清区大气污染物监测数据,研究了武清区PM_(2.5)及SO_2、NO_2等典型大气污染物浓度变化特征和相互关系。结果表明:2016年PM_(2.5)污染较严重,年均浓度分别为73μg·m~(-3),超标1.1倍。大气中SO_2年均值为25μg·m~(-3),NO_2年均值47μg·m~(-3)。冬季及春秋季节大气中存在明显的二次转化过程,大气中的SO_2和NO_2通过转化生成硝酸盐和硫酸盐,对PM_(2.5)浓度变化具有重要影响。  相似文献   

2.
为探讨高原城市昆明大气中水溶性无机离子的季节和空间变化特征,选取2013年4月至2014年5月昆明市3个采样点进行了PM2.5样品采集,分析了PM2.5及水溶性无机离子的污染特征,并结合气象因素、硫氧化率、氮氧化率及主成分分析法对其主要来源进行了分析.结果表明:PM_(2.5)质量浓度季节变化为春((105.9±48.0)μg/m~3)冬((92.7±51.6)μg/m~3)秋((74.7±41.4)μg/m~3)夏((72.2±30.3)μg/m~3).总水溶性无机离子质量浓度季节变化特征为夏((38.0±18.3)μg/m~3)冬((22.0±11.4)μg/m~3)春((18.4±4.8)μg/m~3)秋((13.6±3.1)μg/m~3);其中SO~(2-)_4、Ca~(2+)、NO~-_3及NH~+_4为PM_(2.5)中主要的水溶性无机离子,分别占总离子质量浓度的27.7%、17.8%、15.2%和9.5%;二次离子质量浓度之和年均为13.9μg/m~3,占PM_(2.5)质量浓度的16.5%,表明高原城市昆明大气中二次组分较少.NO~-_3/SO~(2-)_4为0.21~0.68之间,表明固定源是主要污染贡献源.主成分分析结果表明水溶性无机离子主要来源于土壤扬尘和建筑扬尘的混合源、燃煤源和工艺过程源.  相似文献   

3.
测定了武汉经济技术开发区冬季大气中PM_(2.5)的质量浓度,并用IC和XRF技术对PM_(2.5)中的几种水溶性阴离子和无机元素进行了测定和分析。结果显示:监测周期内,武汉经济技术开发区冬季空气中PM_(2.5)的浓度范围是26.00~321.28μg/m~3,平均值为158.78μg/m~3,大大超过PM_(2.5)的国家空气质量二级标准限值(75μg/m~3);水溶性阴离子是PM_(2.5)的重要组分,PM_(2.5)中4种水溶性阴离子浓度大小顺序为NO_3~->SO_4~(2-)>F~->Cl~-,4种离子总和占PM_(2.5)总量的36.85%,13种无机元素总和占PM_(2.5)总量的25.08%;PM_(2.5)中NO_3~-与SO_4~(2-)的平均比值为1.22,NO_3~-与SO_4~(2-)的相关系数高达0.957 1,表明两者有一定的同源性,同时也说明武汉经济技术开发区冬季大气污染中移动源的贡献大于固定源;元素富集因子分析显示,Ti、Cr、Ni、Zn、As富集程度较高,富集因子均大于10,Ni富集因子大于1 000,Fe和Ni、Fe和Cr的相关系数分别是0.833和0.846,表明这些元素主要受人为污染源的影响。  相似文献   

4.
采用综合污染指数法、污染负荷系数法、Daniel趋势检验、Spearman秩相关系数法并结合空气质量指数(AQI)数据,探讨了近5a来太原市环境空气污染物浓度变化,结果表明,2015—2019年,太原市SO_2的超标天数和污染物浓度均逐年下降(超标天数由50d下降至0d,污染物浓度由77.55μg·m~(-3)下降至29.52μg·m~(-3));而NO_2的超标天数和污染物浓度均逐年上升(超标天数由2d上升至40d,污染物浓度由43.11μg·m~(-3)升至59.81μg·m~(-3)),变化趋势显著;PM_(10)和PM_(2.5)的变化表现出一定的波动,变化趋势不显著;空气综合污染指数呈现先升高后降低的趋势,环境空气污染在冬季较为严重.可吸入颗粒物(PM_(10)和PM_(2.5))历年的负荷系数均显著高于SO_2和NO_2,空气污染物以可吸入颗粒物为主.从各年AQI累积的数值之和来看,空气污染有逐渐加重的趋势.  相似文献   

5.
于2013年非采暖期(秋季)和采暖期(冬季)分别对兰州市代表性功能区(城关居民区和西固工业区)大气PM_(2.5)中的6种水溶性无机离子进行了观测研究.结果表明:兰州市大气PM_(2.5)中Na~+、K~+、NH_4~+、Cl~-、NO_3~-、SO_4~(2-)的质量浓度具有明显的季节性差异,采样期间平均质量浓度分别为1.17、1.45、10.75、5.92、13.09、15.46μg/m~3,水溶性无机离子在PM_(2.5)中所占的平均比例为37.01%,非采暖期平均质量浓度分别为0.91、1.23、9.57、3.74、11.56、14.69μg/m~3;采暖期平均质量浓度分别为1.44、1.67、11.93、8.10、14.62、16.23μg/m~3;采样期间6种水溶性无机离子的质量浓度均为采暖期大于非采暖期,西固工业区高于城关居民区(K~+除外).NO_3~-/SO_4~(2-)的比值表明兰州市大气污染正由煤烟型向汽车尾气型特征转换.兰州市大气PM_(2.5)中的NH_4~+与SO_4~(2-)主要以(NH_4)_2SO_4方式结合.  相似文献   

6.
于2015年6月~2016年5月对广州大气细粒子PM_(2.5)进行持续观察,分析了样品中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的含量.结果表明:广州大气PM_(2.5)含量为(66.03±43.11)μg·m~(-3),OC含量为(8.19±5.01)μg·m~(-3),EC含量为(1.75±0.80)μg·m~(-3); OC,EC和总碳(total carbon,TC)占PM_(2.5)的比例分别为16.73%,3.85%和20.58%,表明广州细粒子的碳污染程度较为严重; PM_(2.5),OC和EC污染都呈现冬季春季夏季秋季的特征,与历史研究基本一致; OC,EC相关系数较高(R~2=0.929),表明二者来源较为相近,且PM_(2.5)中EC1占比例最高(45.41%),表明广州燃煤和机动车尾气是重要的污染源;二次有机碳(SOC)为(4.10±3.56)μg·m~(-3),占OC的比例为46.19%,表明广州二次有机碳的排放与形成是碳污染的重要因素.与历史数据相比,广州大气污染情况有所改善,碳气溶胶污染几乎达到历史最低值.  相似文献   

7.
对2016年6—8月在南京市市区某大学校园宿舍和学生办公室采集的2种典型室内环境PM_(2.5)样品,利用电感耦合等离子体发射光谱仪分析PM_(2.5)中As,Cd,Cr,Ni,Cu,Fe,Mn,Pb和Zn等重金属元素浓度.采用富集因子法、地累积指数法和潜在生态风险指数法分别对重金属的污染程度进行评价,并评估大学生群体室内PM_(2.5)暴露健康风险.结果表明,室内PM_(2.5)平均质量浓度为(38. 50±15. 93)μg/m~3,元素Fe的质量浓度最高; Fe,Zn,Pb,Mn和Cu这5种元素为室内PM_(2.5)的主要元素,占总金属元素质量的96. 35%.利用3种污染评价方法得出的重金属元素污染程度排序和污染等级基本一致:Cd为极强污染,Pb和As为强到极强污染,Cr,Ni,Mn和Fe属于无和轻微污染.健康风险评价结果表明,室内PM_(2.5)中重金属致癌和非致癌风险均处于可接受范围内.  相似文献   

8.
为更好地认识上海PM_(2.5)的化学组成特征,使用大流量采集器采集了上海典型地区不同季节的PM_(2.5)样品;利用元素分析仪、热/光碳分析仪、离子色谱仪、化学氧化-紫外分光光度法等多种形式分析了样品中含碳、氮、硫组份的质量浓度及组成;对不同方法的结果进行了比较,探讨了这些组份的季节分布特征及影响因素;建立了利用元素分析仪测定结果估算大气PM_(2.5)中含碳组份、含氮组份和含硫组份质量浓度的方法.研究结果表明,上海PM_(2.5)中总碳(total carbon,TC)的春、夏、秋、冬季平均质量浓度分别为14.26,10.44,11.89和24.35μg·m~(-3),氮元素的春、夏、秋、冬季平均质量浓度分别为8.72,3.07,5.07和17.09μg·m~(-3),而硫元素的春、夏、秋、冬季平均质量浓度分别为6.50,4.06,3.66和6.00μg·m~(-3).上海PM_(2.5)中的碳元素主要以有机碳和元素碳的形式存在,无机碳的贡献很小;绝大部分的含氮物质为水溶性含氮物质,且以无机氮为主;硫元素几乎全部以水溶性硫酸盐的形式存在.元素分析仪的测定结果可以有效地反映PM_(2.5)中含碳、氮、硫物质的质量浓度及组成特征.  相似文献   

9.
利用电感耦合等离子体质谱仪(ICP-MS)测定了郴州市PM_(2.5)中无机元素的质量浓度,并通过元素的富集特征和主成分解析了它们的来源.结果表明,研究区域在春、夏、秋、冬四个季节PM_(2.5)平均质量浓度分别为28.7、30.7、41.4和58.1μg·m~(-3),无机元素的平均占比为15.63%,其中Al、Fe、Zn、Cu、Pb、Cr、Mn、As、Si和Ti占无机元素总量的90.6%.富集因子分析结果表明,Cd、Ag、Bi、Sb、As、Cu、Pb、Zn、Cr、Ni和V主要来自于人为污染,特别是有色金属元素的富集程度较高,这与郴州市是著名的有色金属之乡,有色金属开采及冶炼发达是相关的.主成分分析结果说明郴州市PM_(2.5)中无机元素主要来源于煤和石油的燃烧、汽车尾气排放、有色金属的冶炼以及土壤扬尘.  相似文献   

10.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

11.
基于对天津市23个自动空气质量监测站点的SO_2、NO_2、PM_(10)、PM_(2.5)、CO和O_3监测数据进行分析,掌握了2014年12月1日-2015年11月30日期间各项污染物的时空分布特征,并选取主要污染物分析其时间变化特征和空间分布特征.采用Kriging方法对6项污染物进行分析,获取天津市大气污染物的空间插值分布图.研究结果表明,天津市PM_(10)质量浓度年均值为113μg/m~3,PM_(2.5)年均值为69μg/m~3,均超过二级标准;颗粒物质量浓度呈现明显的季节变化特征,PM_(2.5)浓度季均值从高到低依次为冬季(95μg/m~3)、秋季(64μg/m~3)、春季(63μg/m~3)、夏季(54μg/m~3);站点对比结果表明团泊洼站点污染最严重,而塘沽环保局优良率最高.从空间分布来看,PM_(10)、PM_(2.5)、SO_2、NO_2均表现出中部至南部区域为高值分布区域,说明天津市本地污染排放对大气环境污染的贡献为主要影响因素;而O_3和CO均表现为市区浓度较低而天津市南北区域形成高值且呈现相反分布.  相似文献   

12.
为研究2014年中国四大工业基地25个主要城市的空气质量污染情况,对25个城市2014年1月~2015年2月的数据进行SPSS聚类分析,研究其整体分布情况,并应用统计学和GIS软件分析其主要城市大气颗粒物的污染分布特征,同时利用SPSS软件对大气污染物PM_(10)、SO_2、NO_2、CO、O_3和PM_(2.5)做相关性分析。结果表明:(1)25个城市PM_(2.5)年均质量浓度在32.94~100.23μg·m~(-3)之间,其中分布在40~70μg·m~(-3)之间的城市相对集中,占所有城市的68%,仅3个城市的PM_(2.5)年均质量浓度小于35μg·m~(-3);(2)PM_(2.5)季节变化特征大体表现为冬季秋季春季夏季,重度污染主要集中在12月和1月;(3)从空间分布上看,京津唐污染水平高于其他三个工业基地,珠三角污染水平最低;(4)四大工业基地城市群PM_(2.5)的浓度与PM_(10)、SO_2、NO_2、CO的浓度存在显著相关性。由于温度、气候等原因,在珠三角和长三角O3与PM_(2.5)呈正相关,而在京津唐和辽中南工业基地则呈负相关。  相似文献   

13.
北京市夏季大气气溶胶 PM2.5和 PM10成分特征?   总被引:3,自引:0,他引:3  
对北京市城区2012年夏季大气对气溶胶进行每日PM2.5和PM10石英膜采样,得到了可溶性离子质量浓度和16种元素的质量浓度,并结合气象观测值进行了分析.结果显示,采样期间,PM2.5质量浓度为9.58~210.42μg·m-3,平均值102.81μg·m-3;PM10质量浓度为33.75~288.33μg·m-3,平均值159.66μg·m-3.PM2.5和PM10质量浓度都与采样点能见度、风速呈负相关,与相对湿度呈正相关.质子荧光分析(PIXE)结果显示,S、K、Ca和Fe在PIXE可分析元素中含量较高,在PM2.5和PM10都占89%.且元素Ca、Ti、Sc、Cr、Fe主要存在于粗粒子(PM2.5~10)中,而元素S、Cu、Zn、As、Br、Pb主要存在于细粒子(PM2.5)中.富集因子分析表明,元素K、Ca、Ti、V、Mn、Ni主要为地壳来源,元素S、Cl、Cu、Zn、As、Br、Pb主要来自于人为源.SO2-4、NO-3、NH+43种可溶性离子总质量浓度占PM2.5浓度的43.5%,占PM10浓度的25.4%.  相似文献   

14.
在无锡市崇宁和旺庄环境监测子站,通过对分级颗粒物进行不同季节(2014年4、7、10、12月)的采样,同时对当地颗粒物主要排放源进行采样,并对受体和排放源样品浓度和化学成分进行特征分析,结合化学质量平衡(CMB)模型解析无锡市城区和工业区分级颗粒物来源,确定分级颗粒物不同排放源的贡献率.两个观测站点,PM10年均浓度分别为143.1μg·m~(-3)(崇宁站)、119.9μg·m~(-3)(旺庄站);PM_(2.1)平均质量浓度分别为71.9μg·m~(-3)(崇宁站)、65.3μg·m~(-3)(旺庄站);PM_(1.1)年平均质量浓度分别为53.7μg·m~(-3)(崇宁站)、49.9μg·m~(-3)(旺庄).崇宁站各级颗粒物平均质量浓度均要高于旺庄站,季节差异上,颗粒物浓度在冬季明显高于其他三个季节.分级颗粒物最主要的化学成分是NO_3~-、SO_4~(2-)、OC、NH_4~+、EC、Ca、Cl~-、K、Fe、Al、Na等,通过质量重构方法后最主要的化学组分依次是颗粒态有机物(POM)、硫酸根(SO2-4)、硝酸根(NO-3)、铵根(NH_4~+)、地壳元素(CM)、其它水溶性离子、元素碳(EC)和微量元素.利用CMB模型计算得到,无锡市PM10的排放源主要为二次硝酸盐(18.2%)、二次硫酸盐(17.3%)、土壤扬尘(9.0%),PM_(2.1)最主要的三类排放源依次是二次硝酸盐(26.4%)、二次硫酸盐(22.6%)和电厂燃煤(7.3%),PM_(1.1)的排放主要来自二次硝酸盐和二次硫酸盐,分别可以达到26.6%和22.5%.分级颗粒物来源解析结果可以看出,粗粒径颗粒物主要来自于扬尘类、汽车尾气和工业过程,细粒径颗粒物主要来自汽车尾气和工业过程.为了减轻无锡市颗粒物浓度水平,重点是控制燃煤、工业生产活动中大气污染物的排放,同时要加强城市建设中的扬尘和交通废气控制.  相似文献   

15.
为了解衡阳市中心城区雾霾天PM_(2.5)中重金属污染特征与来源,2014~2015年连续2年对衡阳市城区冬季大气PM_(2.5)进行采集.通过滤膜称重法测量PM_(2.5)质量浓度,微波消解—原子吸收光谱法(AAS)测定PM_(2.5)中Pb、Cd、Cu、Cr、Ni和Fe等6种重金属元素质量浓度,结合富集因子法对衡阳城区大气PM_(2.5)进行来源解析.结果表明:采样期间,衡阳市中心城区冬季雾霾天PM_(2.5)平均质量浓度均超过国家二级标准,2014和2015年冬季PM_(2.5)中重金属污染趋势基本相同,分别为CuFePbCrNiCd和CuFeCrPbNiCd,表明衡阳城区冬季重金属污染规律明显,富集因子法分析后发现PM_(2.5)中Pb、Cd、Cu、Cr、Ni和Fe元素的EF值均大于10,明显来自于人为污染源,其中Cd、Cu为极强富集,污染可能来源于城区周围金属冶炼和工业燃煤烟尘.  相似文献   

16.
为了解北京城区灰霾期间PM_(2.5)中的水溶性离子的污染特征及来源,于2014年1月9日至2014年1月17日在首都师范大学对大气PM_(2.5)样品进行了连续采集,并利用离子色谱法对样品中的水溶性离子进行了分析.结果表明,PM_(2.5)中的水溶性离子质量浓度的日均值为(113.40±77.46)μg·m-3;10种水溶性离子(F~-,NO_2~-,SO_4~(2-),NO_3~-,Cl~-,NH_4~+,Ca~(2+),Na~+,Mg~(2+)和K~+)的总浓度的平均值为(65.34±50.06)μg·m~(-3),其中水溶性离子总量约占PM_(2.5)质量浓度的57%.重污染期间水溶性离子表现出爆发性增长,NO_3~-和SO_4~(2-)的增长率分别为7.57μg·h-1和8.12μg·h-1.结合气象因素发现当温度偏高,气压较弱,相对湿度较高,风速小且以偏南风为主时,PM_(2.5)及其中的水溶性离子质量浓度都维持在较高水平.主成分分析(Principal Component Analysis,PCA)结果也表明,随PM_(2.5)质量浓度逐渐增加的过程中,污染来源为人为二次污染、化石燃料燃烧、交通排放和工业排放,同时还可能存在生物质燃烧和粉尘及废物焚烧的共同影响.  相似文献   

17.
根据海口市2013—2014年空气污染物的监测数据及气象资料,研究了该市的空气质量特征及其与气象要素的关系.结果表明:海口市空气质量优良率为95%;PM_(2.5),PM_(10),O_3是该市的主要污染物,年均质量浓度分别为25.29μg·m~(-3),44.48μg·m~(-3),77.15μg·m~(-3);该市的空气质量随季节变化的特征明显,春、夏、秋、冬四季的AQI值分别为42,35,54,65;污染物的"周末效应"与北京、深圳等国内其他城市不同,表现为:周末浓度大于工作日浓度;旅游黄金周期间污染物均有不同程度增加;污染物日变化特征明显;SO_2,PM_(2.5)表现出一定的区域污染特征;NO_2,PM_(10),CO和O_3表现出一定的局部污染特征;降水、风速、风向、温度、湿度对空气质量的影响显著,在多数情况下AQI与降水、风速、温度、湿度等存在负相关,而与气压存在正相关;对典型污染过程的分析表明:PM_(2.5)受扩散条件、本地排放及外地输送共同影响,O_3浓度与蒸发量、相对湿度及风速等指标有明显关系.  相似文献   

18.
为研究泉州市PM_(2.5)的时空变化特征及其影响因素,以期为有针对性地提出大气污染防治对策提供科学依据,选取2016年泉州市主城区的一城区点和一背景点大气监测站在线PM_(2.5)与污染气体数据,并同期采集PM_(2.5)样品进行综合分析.结果表明:1)城区点和背景点的年均PM_(2.5)质量浓度分别为(31.06±20.96)μg/m~3和(20.59±10.29)μg/m~3,低于我国空气质量标准中的年均质量浓度二级限值;2)PM_(2.5)的月均质量浓度在2—3月最高,其次为11月,这可能与污染物远源传输和不利天气条件的双重影响有关;3)冬、春季城区点PM_(2.5)同时受到一次排放污染物(如工业、机动车)和二次颗粒物的共同影响,而背景点PM_(2.5)则和较多的二次反应产物生成相关;4)夏、秋季两个站点PM_(2.5)和SO_2、NO_2的相关性明显提升,伴随着夏、秋季主导的西南风,验证了西南部工业区排放污染物传输的影响,此外,城区点PM_(2.5)质量浓度还受到粉尘的显著影响;5)硫氧化率和氮氧化率在冬、春季高于夏、秋季,这可能与上游区域污染物的远源传输相关.上述结果为全面掌握泉州市大气颗粒物的分布规律提供了基础数据.  相似文献   

19.
利用乌鲁木齐市2016年12月~2017年11月臭氧(O_3)小时浓度数据,分析了乌鲁木齐市近地面O_3浓度变化特征以及PM_(2.5)和气象要素对O_3浓度的影响。结果表明,2016年12月~2017年11月乌鲁木齐市近地面O_3浓度均值为43.74μg·m~(-3),O_3-8 h浓度第90百分位数为119.98μg·m~(-3)。O_3日变化呈"单峰型",09:00为低谷,16:00达到峰值。臭氧浓度在5~9月相对较高,季节变化从高到低依次为:夏季、春季、秋季、冬季。O_3浓度与PM_(2.5)浓度负相关,高温低湿时二者相关性较高。O_3浓度与相对湿度负相关,与气温、日照时数、风速正相关。在低PM_(2.5)、高温、低湿、长日照时数及风速大于3 m·s~(-1)的气象条件下易发生O_3污染。  相似文献   

20.
2016年11月—2017年2月采暖期在伊犁州环保局设置采样点采集环境空气中的PM_(2.5),利用离子色谱法测定PM_(2.5)中水溶性无机离子(water soluble inorganic,WSIN)含量,分析PM_(2.5)中水溶性无机离子的组成等。结果表明,伊宁市采暖期PM_(2.5)平均质量浓度为54. 9μg/m3,PM_(2.5)中总水溶性离子占PM_(2.5)的比例为11.7%,含量较高的3种水溶性离子依次为SO2-4、NO-3和Cl-,阴阳离子当量回归分析表明,采暖期PM_(2.5)偏碱性;[NO-3]/[SO2-4]平均值为0. 25±0. 08,说明伊宁市的采暖期大气污染是以煤烟型污染为主,并与机动车尾气等共存的复合型污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号