共查询到18条相似文献,搜索用时 97 毫秒
1.
针对目前大部分离群点检测算法未考虑数据的局部信息, 导致离群点检测的准确率低问题, 提出一种新的基于聚类和局部信息的两阶段离群点检测算法. 通过定义新的局部离群因子作为判断数据对象是否为离群点的衡量标准, 改进了传统离群点检测算法的过程. 实验结果表明, 该算法在保持线性复杂度的同时, 能更准确、 有效地挖掘出数据集中的离群点. 相似文献
2.
现有的离群点检测算法运用于规模较大的数据集时,其时间效率和检测效果通常不够理想.通过对离群点分布特征的分析,在计算每个数据点到其kth最近邻对象距离的同时,结合其k最近邻的分布情况,给出一种改进的离群点度量方法.基于上述思想构造的离群点检测算法DokOF能够处理混合属性数据.实验表明,该算法具有良好的适用性和有效性. 相似文献
3.
4.
现有的专利新颖性测量方法需要依赖特定的领域知识以及专家的介入,性能差且耗时,为此,提出了一种不依赖特定领域知识及专家的全自动化系统的识别新颖性专利的方法。首先利用RoBERTa表示专利向量,以解决需要依赖技术领域的知识来表示专利的多义词问题,其次利用数据点的密度分布并结合信息熵改进局部离群因子算法(LOF)来确定离群点个数及数据点集,提高离群点的检测精度,结合RoBERT与改进的LOF在数值尺度上度量专利的新颖性。实验验证表明,所提方法测量的专利新颖性的得分与现有文献中的相关专利指标显著相关,并且识别出的新颖性专利具有更高的技术影响。 相似文献
5.
大多数数据挖掘算法都可以对数据进行相对准确的分类,然而他们都集中于单独地使用聚类的方法。所以对于离群点存在的数据集,常常不能得出准确的结果。而COID算法(Cluster-outlier Iterative detection)把簇和离群点巧妙地结合起来,通过它们之间的关系来检测离群点并进行合理聚类。为进一步提高该算法的实用性,现利用prim算法确定初始簇中心,从而降低了迭代次数,实验证明改进后的算法具有更好的可行性、有效性和准确性,适合于高维数据中对于聚类检测的要求。 相似文献
6.
随着信息技术的快速发展,数据资源的结构越来越复杂,离群点挖掘受到越来越多人关注.基于高斯核函数,考虑数据对象的k个最近邻居,反向k近邻居和共享最近邻居三种邻居关系,估计数据对象的密度,提出了一种基于高斯核函数的局部离群点检测算法.该算法通过KNN图存储每个数据对象的最近邻,包括k最近邻,反向k近邻和共享最近邻,构成数据对象的邻居集合S;通过核密度估计KDE方法估计数据对象的密度;通过相对密度离群因子RDOF来估计数据对象偏离邻域的程度,进而判定数据对象是否为离群点,并在真实和合成的数据集上证明了该算法的有效性. 相似文献
7.
针对信用评价数据存在离群点和噪声问题, 提出一种基于离群点剔除的支持向量机(SVM)信用风险评价模型. 该模型利用模糊c-均值聚类算法剔除样本离群点, 采用粒子群算法优化支持向量机分类参数, 进而提高支持向量机的分类性能. 将该方法应用于信用风险评价中的结果表明, 相比于其他模型, 该方法分类精度更高. 相似文献
8.
针对基于栈式自编码器的离群点(SAE)检测算法和基于密度的离群点(LOF)检测算法检测精度不高的问题,提出了将SAE算法和LOF算法相结合的SAE-LOF算法.该算法的核心是对单独的SAE算法和LOF算法加入"投票"思想,通过神经网络训练权重,计算SAE算法和LOF算法加权投票结果,进而检测离群点.首先,训练并测试SA... 相似文献
9.
王靖 《华侨大学学报(自然科学版)》2008,29(4)
研究局部切空间排列方法(LTSA)对离群点的敏感性,提出一种基于离群点检测的鲁棒局部切空间排列方法(RLTSA).该方法用样本点到切空间的投影距离检测离群点.在构造样本点局部邻域时,RLTSA尽可能排除离群点,以构造稳定的局部邻域,而对离群点,RLTSA把它们投影到更高维的切空间,以减少离群点的投影距离. 模拟实验和实际例子说明,新方法能提高局部切空间排列方法处理离群样本点的能力. 相似文献
10.
针对异常模式挖掘中的情境离群点检测问题,提出一种基于图的检测方法.首先对数据实例构建一个实例图,然后采用一个滑动窗口穿越数据实例,对处于滑动窗口内的数据实例,计算结点之间的闵可夫斯基距离作为边权值,然后采用最小生成树聚类算法对实例图进行聚类,再采用第二个滑动窗口穿越数据实例,根据窗口内的数据实例是否属于主趋势聚类赋予不同的离群值评分,不属于主趋势聚类的数据实例被认为是潜在的离群点.仿真实验和实际数据分析表明该方法在一元序列数据检测中是切实可行的,该方法具有较好的适用性和扩展性. 相似文献
11.
现有配电网连接验证工作将可疑异常值视为具有二元属性的独立个体,因此难以有效识别和验证具有高度内在相关性的局部离群组.针对这一问题,提出了基于AP-LOF离群组检测的配电网连接验证方法.通过引入近邻传播(affinity propagation,AP)聚类方法,将待校验台区用户聚类为多簇,并基于局部离群因子(local outlier factor,LOF)算法对所有簇心进行离群点检测,从而准确识别出台区内的离群组用户.以某电力公司实际用户电压数据进行算例分析,结果证明了AP-LOF算法在配电网连接验证中的适用性和有效性. 相似文献
12.
为解决传统窃电检测方法的局限性,本文提出一种基于层次分析法的加权LOF窃电检测方法。该方法首先通过对窃电现象的系统分析,提出新的用电特征指标,构建合理的窃电嫌疑评价体系;其次针对各电气指标数据异常所能代表窃电的不同概率,采用层次分析法合理量化各电气指标的权重,并结合加权LOF算法对海量用户数据进行加权离群分析,使用综合离群因子表征用户窃电嫌疑程度。最后通过实测数据验证,结果表明所提检测方法相较传统LOF算法在较低检测率时能够挖掘出更多的窃电用户,进而提升采集系统的窃电检测效率。 相似文献
13.
为了减少基于密度的异常点检测算法邻域查询操作的次数,同时避免ODBSN(Outlier Detection Based onSquare Neighborhood)中有意义异常点的丢失和稀疏聚类中的对象靠近稠密聚类时导致错误的异常点判断,提出了一种基于邻域和密度的异常点检测算法NDOD(Neighborhood and Density based Outlier Detection)。NDOD吸收基于网格方法的思想,以广度优先扩张方形邻域,成倍地减少了邻域查询的次数,从而快速排除聚类点并克服基于网格方法中的"维灾"。新引入的基于邻域的局部异常因子代表候选异常点的异常程度,用于对候选异常点的精选,可避免ODBSN的缺陷,发现更多有意义的异常点。大规模和任意形状的二维空间数据的测试结果表明,该算法是可行有效的。 相似文献
14.
针对数据集的聚类过程容易受到离群值的影响这一问题,提出了局部密度离群值检测k-means算法,即先对数据集使用局部密度离群值检测方法检测离群值,先把离群值去除,再进行k-means聚类,算法的有效性通过Davies-Bouldin指标(DB)、Dunn指标和Silhouette指标进行评价,在人工生成的数据集与UCI数据集上验证,去除离群值,再使用k-means算法得到的聚类结果相比原始数据集进行k-means算法聚类结果较好,并且用在疫情数据分析上,对安徽省、北京市、福建省、广东省等24个省、市、自治区2020年2月18日新型冠状病毒肺炎确诊人数进行聚类分析,得到的去除离群值在使用k-means算法相比原始数据集进行k-means算法聚类结果较好,该结果能帮助更好地在实际中怎么去做决策以及更好地降低经济损失。 相似文献
15.
由于异常值的存在对统计推断有很大影响,因此异常值检测是数据分析中的一个重要步骤。对于横截面数据的线性模型,改写模型的设计矩阵后,基于均值漂移模型,利用系数压缩估计方法来进行异常值检测。由于系数压缩估计中调节参数的选择对检测效果有很大影响,基于两种调节方法的加权,提出了一种新的调节方法。数值模拟结果表明,使用这种基于均值漂移模型的异常值检测调节方法,可以显著降低犯两种错误的概率。 相似文献
16.
17.
18.
提出了一种基于距离和密度的聚类和孤立点检测算法.该算法根据距离和密度阈值对数据进行聚类,同时发现数据中的孤立点.实验结果表明,该算法能够识别任意形状的聚类,对高维数据有效,能够很好的识别出孤立点. 相似文献