共查询到20条相似文献,搜索用时 78 毫秒
1.
针对在基于卷积神经网络的图像处理领域内,大部分特征融合只是通过A dd或者Concat操作进行特征叠加或特征拼接而不能很好地将有效特征进行融合的问题,对Add和Concat特征融合引入通道域的注意力机制,设计了4种可学习的特征融合方式:A-Cat、B-Cat、A-Add和B-Add.为了验证方法的有效性,选择YOLOv... 相似文献
2.
准确分割核磁共振(magnetic resonance, MR)图像中的脑组织是临床诊断、手术计划和辅助治疗的关键步骤.深度学习在各种图像分割任务中表现出巨大潜力,现有模型没有一种有效方法汇总远距离像素间的关系.在网络解码阶段不能很好地融合不同层级的特征,导致无法准确定位.为克服上述问题,本文提出一种基于空间自注意力机制和深度特征重建的脑MR图像分割方法,构建了一个可以融合3维信息的2D模型,可快速准确对3D结构图像进行密集预测.在MRBrainS13数据集和IBSR数据集上进行充分地实验研究,结果表明本文方法在3D多模态和单模态脑MR图像分割方面优于目前的2D模型,运算和推理时间相比3D模型小很多,性能却十分接近. 相似文献
3.
链路预测是一种还原网络缺失信息的方法,通过当前已观察到的链路,预测实际存在但未被观察到的链路或可能出现的新链路.当前链路预测主要是基于图神经网络的深度学习方法,相比基于规则的启发式方法,前者可有效利用网络拓扑结构信息,较大地提升了网络链路预测性能,并可应用到类型更广泛的网络中.但是现有基于图神经网络的方法,仅利用网络中节点相对位置信息,忽视了节点基本属性和链路的邻居信息,且无法区分不同节点对链路形成的重要程度.为此,本文提出一种基于图注意力网络和特征融合的链路预测方法.通过增加节点的度、链路的共同邻居数量和共同邻居最大度等特征,丰富了网络的输入特征信息.本文首先提取以目标节点对为中心的子图,然后将其转化为对应的线图,线图中的节点和原图中的链路一一对应,从而将原图节点和链路信息融合到线图的节点中,提升了特征融合的有效性和可解释性.同时本文使用图注意力机制学习节点的权重,增强了特征融合的灵活性.实验表明,本文所提出的方法,在多个不同领域数据集上的AUC和AP均超过90%,在已观测链路缺失较多时,预测性能保持80%以上,且均优于现有最新方法. 相似文献
4.
道路上的交通标志包含大量的交通规则语义信息,快速、准确地获取这些信息有助于实现更高级别的辅助驾驶功能,从而提高车辆的安全性能。针对交通标志易受外界因素影响、类别间相似度高和尺寸微小的难点,本研究基于YOLOv5s模型,在数据预处理、特征提取、特征增强方面分别进行了针对性的改进。在数据预处理部分,利用颜色空间变换、几何变换矩阵来模拟实际场景中交通标志可能发生的颜色变化和形状变化,通过Mosaic算法、Copy-paste算法来提高训练集中微小交通标志的数量和背景的丰富性。在特征提取部分,构建了基于通道注意力标定的C3-TCA模块来提高模型对相似特征的辨别能力。在特征增强部分,通过双路径增强结构融合浅层特征和深层特征,并优化了预测分支的数量和下采样倍率,从而增加了对微小交通标志的检测精度。此外,还利用K-means++算法聚类先验框模板,基于CIoU度量构建边界框回归损失函数,从而降低边界框的回归难度。在TT100K和CCTSDB数据集上进行测试,模型的mAP@0.5指标分别为88.8%和83.5%,模型的检测速度分别为120.5f/s和114.7f/s。相较于现有交通标志检测模型,所构建... 相似文献
5.
图像有损压缩过程往往会导致图像质量退化,使图像出现压缩伪影。针对现有基于深度学习的方法缺乏对联合图像专家组(Joint Photographic Experts Group,JPEG)压缩算法先验信息的利用,提出一种基于变换域注意力机制的去伪影方法。该方法利用卷积神经网络在像素域和离散余弦变换(discrete cosine transform,DCT)域分别提取特征,再将双域学习的特征信息进行融合。利用量化表设计了DCT注意力机制,该模块根据DCT系数的损失程度给予各频率系数不同的权值,使网络自适应补偿量化引起的误差。于此基础上,在像素域引入通道注意力机制,从而更好地利用量化表的先验信息。在主要数据集上,提出的去伪影方法以固定的模型参数对多种质量因子的压缩图像进行伪影去除实验。实验结果表明,所提出的方法在各评价指标和主观视觉上取得较好的效果。 相似文献
6.
为缓解跨域推荐数据稀疏与冷启动问题,该文提出一种融和双塔隐语义与自注意力机制的跨域推荐模型(DLLFM-DA/Self atten CDR model, DLDASA),能够有效提升目标域推荐准确率.首先利用提出的双塔隐语义模型(DLLFM),借助源域和目标域用户的类别偏好和项目类别,生成高质量隐语义;其次,在隐语义特征迁移过程中引入域适应(domain adaptation),有效对齐源域与目标域的特征分布,最小化源域与目标域间数据分布差异,提供更高质量的隐语义特征迁移;然后利用多头自注意力机制捕捉两个域之间的差异性与相关性,对差异信息进行筛选与融合,缓解负迁移问题,以提升跨域推荐质量;最后,在Movielens-Netflix和一品威客(YPWK)-猪八戒网(ZBJW)真实数据集上,将DLDASA与基线单域和跨域推荐模型进行对比实验,结果表明,均方根误差(RMSE)和平均绝对误差(MAE)均有明显改善.该研究验证了DLDASA模型能够更充分地提取用户特征,有效缓解目标域信息不足的问题. 相似文献
7.
积极应对气候变化是可持续发展的目标之一。针对气温准确预测任务,提出了一种基于图注意力机制的气温预测模型。该模型在气温站点组成的拓扑结构上使用了注意力机制,选择性地聚合周围区域的气温特征,再使用神经网络拟合复杂的气温变化规律,得到预测结果。实验使用了2000—2010年京津冀地区的气温数据,经大量实验验证,在极少依赖历史气温数据的情况下,模型能够得到更准确的预测值。模型能够为气候预测和气候灾害预防提供决策支持。 相似文献
8.
9.
基于深度学习的语音增强方法可分为时域方法和频域方法两类,这两类方法各有优点.为了综合利用时、频两域方法的优点,提出了基于邻域自适应注意力的跨域融合语音增强模型.该模型能够同时对输入的波形和频谱进行增强,并对时域和频域的增强结果进行跨域融合得到最终增强结果.为了利用时域增强结果与频域增强结果的信息互补特性,提出使用信息交流模块来实现两域增强结果的互补提升.为了提高时域增强模型与频域增强模型的特征提取能力,充分利用时域和频域的信号特点,进一步提出了邻域自适应注意力模块.该模块依据输入信息自适应选择汇聚具有不同邻域窗口的局部自注意力模块,进而高效利用不同尺度下的平稳特征.实验结果表明,所提邻域自适应注意力模块和时频域的信息交流与融合模块,可有效利用波形与频谱的互补特性,进一步提升增强效果. 相似文献
10.
在问答社区专家推荐算法中,图神经网络主要利用问答社区中用户与问题的交互关系建模,其模型性能取决于交互数据的稠密度,难以对无交互信息的用户及问题进行有效表示学习.针对这一问题,提出了一个基于记忆的注意力图神经网络专家推荐方法.该方法首先设计了面向用户多维特征的联合表示子网络,然后构建了一个记忆网络,为每个问题保存用户回答... 相似文献
11.
黎旭 《云南大学学报(自然科学版)》2000,22(1):20-22
提出并实现了利用自组织特征映照网络来解决模式识别中的聚类问题的算法,对该算法的理论基础进行了必要的阐述,给出了实现的具体算法,同时提供了计算机的仿真结果。 相似文献
12.
基于用例图建立的呼叫处理模型,针对Nakamura提出的业务冲突过滤方法中基桩配置矩阵合并开销过大和过滤检测结论冗余过多的缺点,从增加排除合并前提条件和增强过滤检测定理两个方面进行了改进,并提出了改进的过滤算法.计算机模拟实验结果证实:该改进算法不仅能够明显提高业务合并的效率,同时还能更加精确地定位冲突,减少不确定性结论,提高过滤检测性能. 相似文献
13.
为了解决传统雄穗检测方法因玉米品种不同以及田间环境不同导致的检测误差较大、鲁棒性较差的问题,利用深度卷积神经网络提取特征,并对多尺寸特征图卷积的方法检测玉米雄穗。采用深度卷积神经网络inception作为基础网络来训练提取玉米雄穗特征,同时增加额外的卷积层对图像进行卷积提取特征,最后分别对基础网络中的两层卷积层以及额外的卷积层卷积得到的不同尺度特征图进行分类和位置回归。整体网络结构是多尺度端到端框架,效率高,方便检测不同尺度的雄穗。实验结果表明,此方法提高了雄穗检测的速度和准确率。 相似文献
14.
由于蛋白质的功能与亚细胞位置有关,可以通过预测蛋白质的亚细胞位置来推断蛋白质分子的功能.首先介绍了SOM模型和Batch-Type SOM模型,并用这两个模型分别预测了蛋白质的亚细胞位置,结果表明,使用SOM模型和Batch-Type SOM模型均可以比较准确地预测蛋白质的亚细胞位置;Batch-Type SOM模型在保持预测准确率的同时还可以减少预测的时间. 相似文献
15.
基于自组织特征映射的属性离散化方法 总被引:1,自引:0,他引:1
基于粗糙集理论,用K-W方法初步评价各连续属性的重要性,用自组织特征映射的聚类方法进行离散化,以决策表相容性为判决标准.试验表明,这是一种令人满意的离散化方法. 相似文献
16.
在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上.从提高算法收敛速度和性能出发.提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛两个阶段。并分别采用不同的学习率和邻域函数.采用改进后的SOFM算法对输入样本进行自组织聚类,再利用学习矢量量化(LVQ)算法解决样本分类中的交迭问题。提高了分类精度.仿真实验结果表明.该网络能够识别常用的数字(0~9)和英字母.特别是在有噪声污染的情况下.可以获得较好的效果。 相似文献
17.
通过对天津海岸带遥感图像的研究,提出了基于树型增长神经网络模型的遥感图像聚类方法。该方法申神经模型的网络结构在训练过程中动态生成,用户可根据需要实现层次聚类,同时可以通过调节扩展因子SF的大小调节聚类的速度和精度,从而提高了聚类的精度和灵活性。 相似文献
18.
针对基于深度学习的图像检索提取特征往往包含了复杂的背景噪声,导致图像检索的精确率并不高的问题,提出一种特征图融合与显著性检测的方法.首先,训练用于分类的深度卷积神经网络模型.然后,并将图像卷积之后的特征图谱进行融合,得到图像的显著性区域.最后,通过计算图像显著性特征的余弦距离来进行检索.实验结果证明:相比目前主流的方法,文中方法能够有效提高检测精度,且鲁棒性较高. 相似文献
19.
压气机特性数据是通过大量实验而获取的,结合发动机调节规律对压气机特性数据进行计算,可获得整台发动机的特性,从而缩短发动机研制周期。该文根据某研制中的压气机特性数据,使用坐标数值方法对航空发动机特性进行了计算研究,且基于VB语言开发了相关的程序,实现了高压压气机和低压压气机共同工作线的计算、绘制以及发动机的特性的计算。 相似文献
20.
基于历程的特征造型系统在产品模型的可编辑性和易编辑性技术方面存在的问题涉及到了特征造型中的核心技术,尤其在变量、约束的表示及提高约束变量求解的精确性和效率方面。本文在语义特征造型的基础上提出了对约束方程组进行分解,并转化为有约束的非线性优化问题,然后利用遗传算法约束求解,克服了运用几何变量法求解所存在的收敛性差、求解速度慢,以及单独使用遗传算法进行大量搜索与匹配求解速度缓慢的缺点。 相似文献