首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
以象山隧道为研究对象,利用缩尺温度模型进行实验,讨论环境温度、通风速度对隧道内的温度以及烟气蔓延的影响规律.研究表明:隧道内汽车着火后,火源上方隧道顶部的温度上升幅度大,上、下游人眼特征高度处温度的上升幅度较小;通风对隧道内温度的影响很大;环境温度越低,烟气蔓延时间越短.火灾发生后,未开启风机时,烟气蔓延降至人眼特征高度处时间需350~415 s;开启风机后,风速为2.4和4.8 m·s-1时,烟气达到人眼特征高度处的时间分别为25~40 s和20~30 s.  相似文献   

2.
天山胜利隧道全长22 km,是目前世界最长的在建高海拔高速公路隧道。采用FDS(fire dynamics simulator)软件火灾动力学计算模型模拟了不同通风条件下海拔高度2 850 m的天山胜利隧道火灾发展过程,明确了不同通风条件下天山胜利隧道内火灾烟流的扩散规律以及温度的时空分布规律,提出了主隧道烟气的控制标准。结果表明:(1)考虑天山胜利隧道车型比例、多车辆串燃以及高海拔环境等因素,确定天山胜利隧道火灾火源规模折减为22 MW;(2)当隧道不通风时,火源上方拱顶温度由于隧道坡度影响,具有明显先增大后衰减的趋势,相比于无坡度条件下,前者达到最高温度快,且最高温度低;(3)隧道内温度随着通风速度的增加和远离火源而降低,隧道内可视度随着远离火源先增加后减小、随着风速增加而增大;(4)随着风速增加,人眼特征高度处温度高于60℃、可视度低于10 m的范围逐渐减少;(5)主隧道坡度为1.367%对应的火灾控烟临界风速为4 m/s,横通道坡度为-7.5%时无通风条件下进本无烟气进入。  相似文献   

3.
为探明隧道火灾临界风速时的火区通风阻力,并明确射流风机局部风流场对隧道烟气蔓延的影响规律,采用计算流体动力学软件ANSYS Fluent,建立了考虑20 MW火灾长度800 m的1∶1隧道数值模型。通过开展5 MW隧道火灾数值计算和1∶10物理模型试验,以临界风速和温度为指标,验证所建数值模型的合理性和适用性。确定隧道火灾临界风速及火区通风阻力,并在临界风速条件下,进行火源与射流风机不同相对位置时隧道火灾场景的数值计算。研究结果表明:300 m隧道内5 MW火灾,临界风速约为2.0 m/s,火区通风阻力约为3.0 Pa; 800 m隧道内20 MW火灾,临界风速约为2.8 m/s,火区通风阻力约为7.0 Pa。在20 MW火灾临界风速条件下,当火源位于风机下游40 m范围内,烟气分层完全被破坏,火源下游区域不利于人员疏散,当火源位于风机下游80及120 m处,烟气状态分别为分层较好和分层良好,相应的火灾危险区域分别为火源下游300 m范围内和火源下游100 m范围内;当火源位于风机的上游,烟气蔓延至风机位置前分层良好,蔓延至风机位置后,随高速射流迅速向下部扩散并充满隧道断面,风机下游区...  相似文献   

4.
为了解不同通风方式下隧道火灾烟气的运移情况,开展了管道热烟实验;进行了不同通风方式下火灾烟气运移的数值模拟;分别采用理论计算和数值模拟方法得到了不同火源热释放速率的纵向临界风速。结果表明:纵向风速较小时管道中的烟气呈现层状运动,风速较大时烟气分层现象消失;车厢内烟气的温度高于车厢外相同高度的烟气温度;采用数值模拟得到的临界风速低于弗洛德临界模型的计算结果;相同火灾功率时压入式通风临界风速比抽出式通风临界风速略小。当隧道内产生速度不小于2 m/s的纵向风时,可将烟气限制在火源的下游隧道。  相似文献   

5.
隧道一旦发生火灾事故,火源上游蔓延烟气温度的高低决定着司乘人员逃生的危险程度。通过分析在1/20小比例尺寸隧道模型中开展的26种隧道较大火灾规模实验场景所对应的实验数据,研究了不同燃料类型、不同隧道截面尺寸的隧道火灾在不同纵向通风风速工况下对火源上游烟气温度的影响。研究结果表明,隧道宽度和纵向风速对顶棚下方烟气温度最大温升影响不大,而隧道高度对其影响较大;此外火源上游烟气温度随着纵向风速的增大而减小,随着隧道横截面尺寸的增大而增大;最后给出了隧道火灾顶棚下方火源上游烟气无量纲温升与无量纲距离的关系模型。  相似文献   

6.
 以钱江水下盾构隧道为研究对象,采用FDS 5.0对双向均衡排烟模式和50MW火灾规模下、10个不同集中排烟量对隧道火灾烟气控制效果的影响进行模拟计算。对比分析不同集中排烟量下,隧道内排烟阀处竖向排烟风速、排烟阀及排烟风机口处温度、排烟效率、行车道2m高度处能见度、烟气蔓延范围的变化情况。模拟分析表明,集中排烟量对排烟效果影响很大。当排烟量为190m3/s时,可达到较好的隧道火灾烟气控制效果。  相似文献   

7.
地铁站台发生火灾时,不同排烟模式对烟气流动的影响十分显著。文中以西安某地铁站为对象,采用FDS火灾模拟软件,研究传统排烟方式与增加隧道风机辅助排烟方式的排烟效果。对比分析自然排烟、站台排烟、隧道风机辅助站台排烟3种模式在不同火源位置时的楼梯口风速、人眼特征高度处温度、能见度、CO浓度分布。结果表明,火源位于站台中央时,楼梯两侧均有烟气蔓延,相比站台排烟模式,采取隧道风机辅助站台排烟模式后,站台温度下降约16.7%,CO浓度下降40%,且无烟气蔓延至站厅层。  相似文献   

8.
以重庆某一段349 m长的一端连接地下车站另外一端和室外相通的地铁区间隧道为例,开展全尺寸的火灾实验和数值模拟分析,研究一端开敞的地铁区间隧道烟气流动特性。分析火源在隧道中心位置、不同热释放速率条件下隧道内火灾烟气蔓延速率、隧道内烟气最高温度以及烟气温度在隧道纵向分布的特征,并对比分析利用区间隧道事故风口进行机械排烟和机械送风的烟气控制模式效果,提出描述区间隧道断面形状对烟气流动特性影响的参数。研究结果表明:烟气蔓延速率受纵向风速和车站烟囱效应作用影响,火源上游区域烟气蔓延速率较小,烟气回流距离比两端开敞的公路隧道经验公式计算值小,隧道内烟气最高温度比Kurioka预测模型计算值小,隧道顶部上游的烟气温度纵向分布服从指数衰减规律;将隧道烟气最高温升预测模型应用于形状系数小于1的区间隧道需要进一步修正;区间隧道内靠近地下车站的事故风口,采用机械排烟或机械送风模式,可以有效排除着火区间隧道内的烟气;事故风口机械通风量及其运行模式的选择需综合考虑隧道地理形式、火源功率、疏散方式等因素。  相似文献   

9.
顶棚烟道对隧道火灾烟流蔓延作用的数值分析   总被引:1,自引:0,他引:1  
为了解发生火灾后,顶棚设有烟道的隧道结构对人员逃生是否有利,采用火灾动力学数值模拟软件FDS,对热释放速率为20MW的中等火灾规模进行模拟,着重分析了烟道设置以及烟道口处排风风速变化时的烟气蔓延和温度分布情况.结果表明:在现有的隧道顶部加烟道将提高整个隧道顶部的烟气浓度,内侧烟气浓度从40mg/m3提高到120mg/m3,外侧提高到100mg/m3;烟道口处设排风可加速烟气进入烟道,使得离火灾发生位置最近的两个烟道口外侧的烟气浓度和温度大大降低,提高了人员逃生的安全系数;当排风风速为2.5m/s时,300s后排风口外侧的CO含量开始趋于常数且低于13×10-6(体积分数),该浓度下人员可顺利逃生,同时可使得火灾发生时消防人员可从上、下游两个方向对火灾进行扑救;该种隧道结构下发生火灾时必须保证只有2个烟道口处于开启状态.  相似文献   

10.
在0,0.6和1.2m/s机械通风条件下,实验研究不同火源距离和火源位置时挤塑聚苯乙烯泡沫塑料(XPS)的火灾行为、引燃特性及烟气特性.结果表明,随着风速的增大,XPS表面火焰蔓延速度逐渐增大且较早出现结焦现象.通风风速和火源位置相同时,XPS引燃时间与火源距离近线性相关;火源位于垂直墙面位置时,风速从0.6m/s增加到1.2m/s,XPS最大引燃距离从0.2m缩短至0.15m.与其他工况相比,风速为0.6m/s时,烟气温度达最大值,且氧气、二氧化碳及一氧化碳浓度变化量最小,XPS燃烧速率随着风速的增加先增大后减小;当风速较小时,氧气浓度增加对XPS燃烧起主导促进作用;随着风速的进一步增加,其热效应对燃烧的抑制作用显著增强.  相似文献   

11.
为验证发生事故隧道纵向通风、非事故隧道正压送风的气流防烟模式的有效性,通过以类矩形地铁区间隧道为原型,建立了1:3的实体试验平台,对两种纵向通风模式的防烟效果、非事故隧道沿程温度及联络通道口温度变化对比分析。结果表明:事故隧道纵向通风、非事故隧道正压送风这种有效的气流防烟方法既可在无空间设置防火门的地铁区间隧道得以应用,也可以作为常规地铁区间隧道防火门损坏后降低火灾危害的应急手段。可见在有效的正压送风模式下,事故隧道纵向通风临界风速为1.6m/s,1#A联络通道口临界风速为1.7m/s,1#B联络通道口临界风速为1.8m/s,该参数可以为地铁区间隧道风机提供选型依据。  相似文献   

12.
公路隧道火灾的模型试验与数值模拟分析   总被引:2,自引:0,他引:2  
为研究公路隧道火灾烟气温度场的分布规律,提升公路隧道的火灾安全性,以相似理论为依据,结合某实际隧道工程实例,设计了一套隧道火灾模型实验装置。模型隧道横截面为0.88m×0.5m,长12m,隧道内的风速可在0~5m/s范围内调节。采用该试验装置,进行了火灾时隧道内温度场的纵向、横向分布规律以及温度场扩散范围的火灾模型试验。试验中设定了不同的通风风速来模拟实际的隧道火灾场景,隧道内烟流温度通过数据采集系统读取。用FDS火灾动力学模拟软件进行了数值模拟计算,总体来看数值模拟的结果与试验数据的吻合程度较好。并依据试验及数值模拟的结果对隧道火灾的控制、救援和人员疏散提出了一些建议。  相似文献   

13.
以公路隧道内小轿车着火、客车驶经火源的场景为例,依托某隧道工程建立火灾计算模型,利用重叠网格技术和火灾数值模拟方法,研究了车辆运动速度对隧道火灾温度分布的动态影响规律.结果表明:当车辆以11.11m/s的速度经过火源时,火源中心横、纵截面隧道顶部的烟气温度最低;当车辆诱导气流对温度分布的影响达到最大时,横断面烟气温度呈现出由着火车道至车辆经过车道先降低、后升高的规律;在最高温度点上游15m范围内纵向烟气温度平稳衰减,且在车速为11.11m/s时衰减速率最大.  相似文献   

14.
长大公路隧道火灾温度场分布试验研究   总被引:2,自引:0,他引:2  
为了掌握长大公路隧道内的火灾行为,提升秦岭特长公路隧道的火灾安全性,进行了火灾时隧道内温度场的纵向、横向分布规律及温度场扩散范围的大比例(1:6)火灾模型试验.模型隧道内径为1.8 m,长100 m.隧道内的风速在10 m/s范围内.试验中设定了3个火灾规模用以模拟实际的隧道火灾场景.试验中隧道内烟流温度通过CAN数据采集系统自动记录.试验结果表明,横向温度分布呈现拱顶最高,拱腰、边墙次之,底部最低的规律.对纵向温度分布而言,火区温度最高,随着远离火区温度逐渐降低.火灾规模及通风速度对温度分布及温度扩散范围具有明显的影响.随着火灾规模的增大,隧道内各点烟流温度及影响范围均增大.而随着通风速度的增大,温度扩散范围增大,火区最高温度降低,隧道内温度分布趋于均匀.此外,根据试验成果对结构防火措施、设备布置方案、火灾时通风风速的设定以及行车距离的限制等给出了合理的建议.  相似文献   

15.
为分析不同通风模式对于池火热传递过程的影响,在隧道模型内进行直径0.5 m酒精池火实验,测试和对比燃料质量损失速率、火场温度、火焰辐射热和对流换热热通量.结果表明:在0.5 m/s纵向排烟模式下,旺盛阶段连续火焰区火焰辐射热通量比自然通风条件增加了30%左右,这对火灾热传递过程控制不利.在0.8,1 m/s纵向排烟条件下,旺盛阶段连续火焰区火焰辐射热通量及上部热烟气层温度显著降低.0.5 m/s顶部排烟显著降低了旺盛阶段连续火焰区火焰辐射热通量,火灾最晚达到旺盛阶段,较早进入衰减阶段.0.5 m/s顶部排烟是本实验条件下最佳的排烟模式.  相似文献   

16.
采用CFD方法监测了上海地铁一号线人民广场站站台火灾环境下,采用事故风机+站台空调通风与回风+站台下侧排烟的强制通风、不同屏蔽门开启方式对烟气温度场、CO分布及浓度的影响.结果表明:着火6 min时,强制通风可使站台楼梯口温度Tavg<50.73℃,[CO]avg<150 ppm,并基本消除CO由站台层向站厅层的扩散;部分开启屏蔽门可实现站台层烟气向站台隧道的抽吸,增加站台安全撤离区域.结果同时指出站台层至站厅层个别楼梯口的温度、风速及风向尚未完全达到地铁设计规范要求,需要进一步分析原因.  相似文献   

17.
 为研究动态火源对隧道拱顶温度场分布影响规律,针对隧道中动态火源火灾,在自然通风条件下,静止、40km/h及60km/h等速度的20MW火源在隧道内穿行的火灾过程,采用火灾动力学模拟器Fire Dynamic Simulator(FDS)进行火灾场景的模拟与计算.重点对火源在隧道行进过程中拱顶沿纵向温度分布、温度峰值变化规律及影响因素进行分析.研究结果表明,通风是影响隧道火灾温度的主要因素,移动火源在一定程度上打破了隧道内由于顶棚射流引起的热烟气与冷空气的动态循环机制,活塞风尾段涡流会引起隧道流场变化,一定程度阻碍了燃烧释放热量向火源行进逆向的扩散,并将高温气流带向其运动方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号