首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
为确定七角井钒铁矿充填物料的最佳配比,以该矿尾砂、干抛尾、粉煤灰以及42.5R型复合硅酸盐水泥为试验材料,考虑固相质量分数、尾抛质量比、灰砂质量比以及粉煤灰掺量为影响因素,运用正交试验设计法设计了16组试验配方,测试了不同样品的塌落度、凝结时间、泌水率、离析率以及7 d,28 d,56 d龄期充填体的单轴抗压强度,采用极差分析法研究了各因素对试验指标的影响规律及敏感程度,最终确定了最优的物料配比。研究结果表明:当质量分数为78%,尾抛比为7∶3,灰砂比为1∶20,粉煤灰为水泥1倍时,料浆满足该矿充填的各项工程性能,据此探讨了该矿的充填工艺流程,为类似工程提供了借鉴。  相似文献   

2.
通过设计水胶比、粉煤灰掺量、砂率和沙漠砂替代率四因素三水平正交试验,进行沙漠砂混凝土抗碳化性能试验,分析了各因素对C40沙漠砂混凝土抗碳化性能影响。研究表明:碳化3 d后各因素对沙漠砂混凝土碳化性能影响顺序为粉煤灰掺量水胶比砂率沙漠砂替代率;碳化7 d、14 d后各因素对沙漠砂混凝土碳化性能的影响顺序为粉煤灰掺量水胶比沙漠砂替代率砂率;碳化28 d、56 d后各因素对沙漠砂混凝土碳化性能的影响顺序为水胶比粉煤灰掺量沙漠砂替代率砂率。综合各因素对沙漠砂混凝土抗碳化性能影响,确定其最佳配合比为水胶比0.39,粉煤灰掺量10%,砂率30%,沙漠砂替代率30%。  相似文献   

3.
毛乌素沙漠砂混凝土力学性能研究   总被引:1,自引:0,他引:1  
设计正交试验,研究水胶比、粉煤灰掺量、砂率和沙漠砂替代率对沙漠砂混凝土7 d、28 d、56 d抗压强度和28 d劈裂拉伸强度的影响,通过极差分析和方差分析确定了沙漠砂混凝土的最优配合比。研究结果表明:用沙漠砂替代中砂配制混凝土是可行的;综合考虑沙漠砂混凝土7 d、28 d、56 d抗压强度和28 d劈裂拉伸强度,沙漠砂混凝土的最优配合比为水胶比0.34、粉煤灰掺量10%、砂率30%、沙漠砂取代率30%,为沙漠砂在工程中的应用提供指导和借鉴。  相似文献   

4.
试验研究水灰比、砂率、粉煤灰替代率、硅灰掺量及废砖替代率5个因素对复掺废砖再生混凝土抗压强度的影响.结果表明:水灰比、砂率和粉煤灰替代率对复掺再生混凝土28 d抗压强度的影响都是先增大后减小;随着硅灰掺量的增加,再生混凝土28 d抗压强度依次增大;随着废砖替代率的提高,再生混凝土28 d抗压强度逐步减小;当其他组分掺量适当,废砖骨料替代率为100%时,可以配制满足C30强度要求的再生混凝土.  相似文献   

5.
粉煤灰砂浆早期抗压强度试验研究   总被引:2,自引:0,他引:2  
根据不同配合比研制的粉煤灰掺量13.6%的3组,粉煤灰掺量11.5%的3组,共6组M5粉煤灰砂浆.经过3天自然养护,对其进行了抗压强度试验,研究粉煤灰砂浆早期抗压强度的影响因素.试验研究表明:引气剂(微沫剂)掺入会降低粉煤灰砂浆的早期强度.减水剂的掺入可以提高粉煤灰砂浆的早期强度.减水剂掺量一定时,水胶比越小,粉煤灰水泥的早期抗压强度越高.从6组试件中选出28天抗压强度可达M5以上的粉煤灰砂浆,其配合比为:水泥:粉煤灰:轻砂:水:微沫剂:减水剂=1:0.7:4.4:2.0:0.00326:0.096.  相似文献   

6.
沙漠砂替代率对高强混凝土抗压强度影响研究   总被引:3,自引:2,他引:1  
通过正交实验,分析了水胶比、粉煤灰掺量、砂率和沙漠砂替代率对不同龄期高强混凝土抗压强度影响。在正交试验基础上,保持水胶比、粉煤灰掺量和砂率不变,通过单因素实验,进一步研究不同沙漠砂替代率对高强混凝土抗压强度的影响规律。研究结果表明:用沙漠砂替代中砂配制高强混凝土是可行的;综合考虑正交试验和单因素试验中沙漠砂替代率对高强混凝土抗压强度的影响,沙漠砂高强混凝土中沙漠砂的最佳替代率20%。  相似文献   

7.
为提高碳纤维在混凝土中的分散性,利用可再分散聚合物乳胶粉与短切碳纤维对混凝土进行复合改性,运用正交试验方法,基于L9(43)正交试验表,设计两批18(2×9)组聚合物乳胶粉-碳纤维复合改性混凝土(PMCFRC)的坍落度、28 d抗压强度及纤维分散性检测试验。第1批正交试验研究了水灰比、聚合物掺量、碳纤维掺量对PMCFRC性能的影响,第2批正交试验研究了分散剂种类、分散剂掺量、减水剂掺量对PMCFRC性能的影响,获得PMCFRC的坍落度、抗压强度、电阻率等基本参数,并利用极差和方差分析方法,研究各因素的主次顺序,分析其是否影响显著,基于此寻找出PMCFRC最优配合比。结果表明:第1批正交试验中,对于坍落度、电阻率以及电阻率变动系数,碳纤维掺量为显著因素;对于28 d抗压强度,水灰比为显著因素;第2批正交试验中,对于坍落度和28 d抗压强度,减水剂掺量为显著因素;对于电阻率和电阻率变动系数,分散剂掺量为显著因素。PMCFRC最佳配合比为:水灰比0.49,聚合物掺量12%,碳纤维掺量0.3%,砂率34%,分散剂选用羟乙基纤维素,分散剂掺量0.4%,...  相似文献   

8.
采用正交试验法探讨掺入减水剂后各因素对掺电石渣的水泥砂浆强度的影响,确定水泥砂浆强度性能较佳的配方并分析其微观结构.结果表明:掺入减水剂后,对掺电石渣的水泥胶砂试样早期抗压强度的影响从大到小的次序分别为胶砂比、水灰比、电石渣掺量、减水剂掺量、减水剂品种、搅拌时间、减水剂的掺入方式.正交试验法确定的水泥胶砂试样较佳的配方为,电石渣掺量为5%;减水剂为J2,采用后掺方式,其掺量为0.5%;水灰比为0.377;胶砂比为1∶1.5;搅拌时间为9 min.  相似文献   

9.
 某铅锌矿使用膏体充填中出现了缓凝现象,添加促凝剂后效果良好。为优化添加促凝剂条件下的膏体物料配比,开展了均匀设计实验。考察了膏体质量分数、砂灰比对泌水率、流动度、充填倍线、膏体强度的影响。实验结果表明,膏体的泌水率、流动度和充填倍线主要受质量分数影响,且均与浓度成负相关。砂灰比对流动度的影响很小,但其是膏体强度的主要影响因素,砂灰比越小,膏体的强度越大。综合考察泌水率、流动度、充填倍线、膏体强度4 种指标对应的配比范围,得出推荐配比为质量分数75%~76%、砂灰比7:1~8:1。  相似文献   

10.
本研究分析了制备超高性能海水海砂混凝土(Ultra-high Performance SeawaterSea-sand Concrete,UHPSSC)的影响因素及其性能优化. 首先采用正交试验,探究了水胶比、砂胶率、硅灰掺量及粉煤灰掺量对UHPSSC力学性能及流动度的影响,并得到了最优配比. 基于最优配比,分别研究了...  相似文献   

11.
为了研究粉煤灰掺量和沙漠砂替代率对高强沙漠砂混凝土力学性能影响,进行不同粉煤灰掺量和沙漠砂替代率高强沙漠砂混凝土28 d抗压强度和劈裂拉伸强度实验,分析粉煤灰掺量和沙漠砂替代率对高强沙漠砂混凝土28 d抗压强度和劈裂拉伸强度影响规律.实验结果表明:随着沙漠砂替代率增加,高强沙漠砂混凝土抗压强度和劈裂拉伸强度呈现先增大后减小趋势,沙漠砂替代率为20%时,高强沙漠砂混凝土抗压强度和劈裂拉伸强度均达到最大值;随着粉煤灰掺量增加,高强沙漠砂混凝土抗压强度和劈裂拉伸强度先增大后减小,粉煤灰掺量为15%时,高强沙漠砂混凝土抗压强度和劈裂拉伸强度达到最大值,为沙漠砂在工程中的应用提供指导和借鉴.  相似文献   

12.
以粉煤灰为主要原材料,矿粉为添加剂,水玻璃和氢氧化钠为激发剂,制备地聚合物。通过正交试验测试了水胶比(W)、碱激发剂掺量(S)、矿粉取代率(B)和水玻璃模数(M)在不同水平下的地聚合物试样3 d、7 d与28 d的拉伸强度。通过极差分析和因素指标分析,得出各因素对拉伸强度的影响规律。当水胶比为0.3,碱激发剂掺量为0.08,矿粉取代率为0.3,水玻璃模数为1.8,试样的各龄期拉伸强度较优,可得到3 d、7 d和28 d拉伸强度为1.65 MPa、2.25 MPa和3.68 MPa的地聚合物胶凝材料。通过X射线衍射(XRD)和扫描电镜(SEM)对拉伸性能进行了机理分析。分析结果表明,拉伸强度与无定型凝胶体的含量和产物微观形貌相关。  相似文献   

13.
水灰比、堆积密实度和比表面积是充填体强度的重要影响因素,但有关各因素对强度影响显著性的研究较少,为此通过3因素5水平正交试验,分别对龄期为3 d,7 d和28 d的试块开展单轴抗压强度试验.对试验结果进行方差分析,获得不同龄期各因素F统计值比(水灰比:堆积密实度:比表面积):3d为698.404:26.148:0.91...  相似文献   

14.
利用粗骨料进行高浓度胶结充填是矿业工程中的研究难点,也是前沿性研究课题。为高效利用粗磷尾矿以消除环境污染、土地占用以及采空区诱发的地质灾害等问题,以粗磷尾矿和粉煤灰为主要材料,首先通过SEM、ICP-MSICP-OES、XRD、激光粒度分析及其他标准测试手段对主要充填材料的物理特性、化学成分和矿物成分进行分析;然后利用Füller和Talbol最大密实度曲线理论对粗磷尾矿自然级配和不同破碎粒度磷尾矿级配进行研究;最后采用正交试验设计法及多元非线性回归法对充填料浆和易性规律进行研究。结果表明,粗磷尾矿和粉煤灰物理性能较差,但前者化学特性稳定,后者具有较强火山灰特性;-5 mm粒度破碎磷尾矿具有较优密实度;充填料浆坍落度均随胶砂比、质量浓度和水泥/粉煤灰增大而先增后减,其中胶砂比的影响程度最大;坍落扩散度均随胶砂比、水泥/粉煤灰增大而增大,随质量浓度增大而先增后减,其中质量浓度的影响程度最大;稠度均随胶砂比、质量浓度增大而减小,随水泥/粉煤灰增大而先增后减,其中质量浓度的影响程度最大,且坍落度、坍落扩散度和稠度与各因子之间存在显著非线性关系。  相似文献   

15.
辽宁省的工业废渣粉煤灰、硅锰渣和硼泥排量巨大,用这些废渣替代部分水泥、石子和河沙配制混凝土既环保利废、具有显著的经济效益和社会效益,又有利于可持续发展.采用辽阳市混凝土常用原材料以及灯塔昌明墙体材料厂生产的硼泥陶粒,通过正交试验优化配合比,分析了水泥用量、粉煤灰掺量、硅锰渣的掺量对硼泥陶粒混凝土抗压强度的影响规律.实验结论,当水泥用量为480 kg/m3、粉煤灰掺量占胶凝材料质量的10%、硅锰渣的掺量为细骨料体积的60%时可以配制出LC30轻骨料混凝土.  相似文献   

16.
岩石边坡生态种植基强度的正交试验   总被引:3,自引:0,他引:3  
采用正交实验, 在种子能够发芽的前提下, 研究水泥(A)、土壤(B)、腐殖质(C)和水(D)4个因素在不同水平下对基材无侧限抗压强度的影响. 通过正交试验确定了不同龄期时4种因素对基材的影响顺序、各因素的显著性水平及混合基材的优化配比方案. 研究结果表明: 龄期为3 d和7 d时, 4种因素对基材无侧限抗压强度影响顺序从大到小依次为: 水泥、土、腐殖质、水;14 d和28 d影响的顺序分别为: 水泥、腐殖质、土、水和水泥;腐殖质、水、土;龄期为3 d和7 d时, 应选取的基材最佳配比分别为A2B2C1D4和A2B2C2D4;龄期为14 d和28 d时, 应选取的基材最佳配比均是A2B2C2D3;对基材1周内无侧限抗压强度有显著性影响的因素是水泥, 对基材2周后有显著性影响的因素除了水泥外, 还有腐殖质.  相似文献   

17.
为提高废旧陶瓷的再生利用率,将陶瓷颗粒与陶瓷粉作为再生混凝土骨料与掺合料进行再生利用.运用正交设计的试验方法,以陶瓷粉、陶瓷颗粒、再生细骨料、粉煤灰、硅灰为5因素,每个因素设置4个水平,共设计16组配合比方案,进行抗压、导热等试验,得到陶瓷再生混凝土的强度、导热系数等物理力学参数,并寻找出最优配合比.试验结果表明最佳配合比为:陶瓷粉的质量分数为10%,陶瓷颗粒的质量分数为20%,再生细骨料的质量分数为40%,粉煤灰的质量分数为15%,硅灰的质量分数为5%.  相似文献   

18.
陈鑫  余文亮 《科学技术与工程》2024,24(10):4229-4238
高放废物深地质处置库中的混合型缓冲回填材料是由膨润土和各类掺合料压实而成的多相复合材料,在多组分混合与压制过程中其内部孔洞、微裂隙等缺陷随机分布,即使在相同试验条件下其抗拉强度值也表现出较大的变异性。为阐明试验试样厚径比对混合型缓冲回填材料劈裂抗拉强度的影响规律,针对不同厚径比试样开展了大量的巴西劈裂试验,探讨了不同厚径比试样抗拉强度统计特征及分布概型。结果表明:混合型缓冲回填材料试样劈裂抗拉强度与圆盘厚径比呈显著的幂函数关系,显著性检验结果小于0.05。混合型缓冲回填材料劈裂抗拉强度的均值、极差、标准差及变异系数都呈现出明显的尺寸效应。圆盘厚径比为1.0时,劈裂抗拉强度的极差、标准差及变异系数均最小,从统计特征来看,建议进行巴西劈裂试验时圆盘厚径比设定为1.0。根据K-S检验和有限比较法知圆盘厚径比不同,劈裂抗拉强度最优分布概型也不相同。常用的4种概率分布形式中的正态分布和威布尔分布能更好的描述混合型缓冲回填材料劈裂抗拉强度分布规律。  相似文献   

19.
覆岩离层注浆充填技术是一种煤矿绿色开采新技术,能有效控制离层上方的地表沉陷,对保护地表建筑物安全及生态环境稳定具有重要意义。为了探究离层注浆浆液最优配比,选取水固比、固相比、水玻璃掺量和悬浮剂掺量4个浆液性质的主要影响因素,采用正交试验和单因素试验的方法探究各因素对浆液的相对密度、黏度、析水率和结石率的影响。试验结果表明,水固比是控制浆液性质的主控因素。其他影响因素中,固相比对黏度影响较大,水玻璃掺量对析水率、结石率影响较大。单因素实验中,各电厂粉煤灰浆液随水固比减小,浆液析水率减小,结石率增加,黏度增加,即浆液中粉煤灰质量比越大,浆液稳定性和填充效果越好,但扩散半径越小。随着水固比减小,达到某一水固比值后,浆液黏度将显著增大。不同电厂粉煤灰浆液性质不相同,因此在注浆前对拟用粉煤灰进行试配是必要的。  相似文献   

20.
采用水溶液聚合法,将烯丙基聚乙二醇(APEG)与丙烯酸(AA)、丙烯酰胺(AM)、甲基丙烯磺酸钠(MAS)共聚合成聚羧酸系减水剂,探讨了AA与APEG的摩尔比、AM与APEG的摩尔比、MAS与APEG的摩尔比、反应浓度、加料方式、引发剂用量(相对于所有单体质量和的百分比)、共聚温度和反应时间对所合成聚羧酸系减水剂性能的影响.结果表明:采用最佳合成工艺参数制备的减水剂在掺量仅为水泥用量的0.8%(质量分数)时就具有良好的减水率、保坍性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号