首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Rupp  H Acha-Orbea  H Hengartner  R Zinkernagel  R Joho 《Nature》1985,315(6018):425-427
T lymphocytes involved in the cellular immune response carry cell-surface receptors responsible for antigen and self recognition. This T-cell receptor molecule is a heterodimeric protein consisting of disulphide-linked alpha- and beta-chains with variable (V) and constant (C) regions. Several complementary DNA and genomic DNA clones have been isolated and characterized. These analyses showed that the genomic arrangement and rearrangement of T-cell receptor genes using VT, diversity (DT), joining (JT) and CT gene segments is very similar to the structure of the known immunoglobulin genes. We have isolated two cDNA clones from an allospecific cytotoxic T cell, one of which shows a productive V beta-J beta-C beta 1 rearrangement without an intervening D beta segment. This V beta gene segment is identical to the V beta gene expressed in a helper T-cell clone specific for chicken red blood cells and H-21. The other clone carries the C beta 2 gene of the T-cell receptor, but the C beta 2 sequence is preceded by a DNA sequence that does not show any similarity to V beta or J beta sequences.  相似文献   

2.
G K Sim  J Yagüe  J Nelson  P Marrack  E Palmer  A Augustin  J Kappler 《Nature》1984,312(5996):771-775
The T-cell receptor has been studied intensely over the past 10 years in an effort to understand the molecular basis for major histocompatibility complex (MHC) restricted antigen recognition. The use of anti-receptor monoclonal antibodies to isolate and characterize the receptor from human and murine T-cell clones has shown that the protein consists of two disulphide-linked glycopeptides, alpha and beta, distinct from known immunoglobulin light and heavy chains. Like immunoglobulin light and heavy chains, however, both the alpha- and beta-chains are composed of variable and constant regions. Molecular cloning has revealed that the beta-chain is evolutionarily related to immunoglobulins, and is encoded in separate V (variable), D (diversity), J (joining) and C (constant) segments that are rearranged in T cells to produce a functional gene. We report here cDNA clones encoding the alpha-chain of the receptor of the human T-cell leukaemia line HPB-MLT. Using these cDNA probes, we find that expression of alpha-chain mRNA and rearrangement of an alpha-chain V-gene segment occur only in T cells. The protein sequence predicted by these cDNAs is homologous to T-cell receptor beta-chains and to immunoglobulin heavy and light chains, particularly in the V and J segments.  相似文献   

3.
Developmental regulation of T-cell receptor gene expression   总被引:13,自引:0,他引:13  
D H Raulet  R D Garman  H Saito  S Tonegawa 《Nature》1985,314(6006):103-107
In contrast to B cells or their antibody products, T lymphocytes have a dual specificity, for both the eliciting foreign antigen and for polymorphic determinants on cell surface glycoproteins encoded in the major histocompatibility complex (MHC restriction). The recent identification of T-cell receptor glycoproteins as well as the genes encoding T-cell receptor subunits will help to elucidate whether MHC proteins and foreign antigens are recognized by two T-cell receptors or by a single receptor. An important feature of MHC restriction is that it appears to be largely acquired by a differentiating T-cell population under the influence of MHC antigens expressed in the thymus, suggesting that precursor T cells are selected on the basis of their reactivity with MHC determinants expressed in the host thymus. To understand this process of 'thymus education', knowledge of the developmental regulation of T-cell receptor gene expression is necessary. Here we report that whereas messenger RNAs encoding the beta-and gamma-subunits are relatively abundant in immature thymocytes, alpha mRNA levels are very low. Interestingly, whereas alpha mRNA levels increase during further development and beta mRNA levels stay roughly constant, gamma mRNA falls to very low levels in mature T cells, suggesting a role for the gamma gene in T-cell differentiation.  相似文献   

4.
M P Lefranc  T H Rabbitts 《Nature》1985,316(6027):464-466
The recent detailed analysis of genes that undergo rearrangement in T cells has shown that the T-cell receptor genes encoding alpha- and beta-chains are involved in specific alterations in T-cell DNA analogous to the immunoglobulin genes. A third type of gene, designated gamma, has been isolated from mouse cytotoxic T lymphocytes, and evidence suggest that the mouse displays very limited diversity in this gene system, having only three variable-region (V) genes and three constant-region (C) genes. The function of the so-called T-cell gamma gene is unknown. We have isolated genomic genes encoding the human homologue of the mouse T-cell gamma gene; as there is no evidence that this T-cell rearranging gene is anything to do with the T3 molecule, we have designated the human T-cell rearranging gene as TRG gamma (ref. 13), to avoid confusion with the T3 gamma-chain, and have shown that the gene locus maps to chromosome 7 in humans. We now report that human DNA contains two tandemly arranged TRG gamma constant-region genes about 16 kilobases apart. These two genes show multiple rearrangement patterns in a variety of T cells, including helper and cytotoxic/suppressor type, as well as in all forms of T-cell leukaemia. Our results indicate variability of this T-cell gene system in man compared with the analogous system in mouse.  相似文献   

5.
The immunoglobulin mu constant region gene is expressed in mouse thymocytes   总被引:9,自引:0,他引:9  
D J Kemp  A Wilson  A W Harris  K Shortman 《Nature》1980,286(5769):168-170
It has been a matter of controversy whether the functional capacity of T cells to discriminate between antigens is mediated via immunoglobulin, an immunoglobulin-like molecule, or by the product(s) of unrelated genes. The progenitors of immunoglobulin-secreting cells, B cells, express membrane-bound immunoglobulin as the antigen-specific receptor on their surface. For T cells, although products of immunoglobulin heavy chain variable region genes are implicated as receptor components, there has been no compelling immunochemical evidence for participation of either immunoglobulin light chains or heavy chain constant regions (see refs 2-6 for the disparate views). Recently, using cloned immunoglobulin DNA sequences as hybridization probes, we have demonstrated that the immunoglobulin Cmu gene, but not the Cmu gene, is expressed as polyadenylated RNA in some T cell tumour (T lymphoma) cell lines. Individual T lymphoma lines yielded up to three discrete mu RNA species of different sizes (1.9, 2.2 and 3.0 kilobases), each species being different in size from the major mu RNA species present in B lymphoma cells (2.4 and 2.7 kilobases). We show here that cells from the normal mouse thymus contain mu RNA species, indistinguishable in size from those in T lymphoma cells, but contain little if any kappa RNA.  相似文献   

6.
The T-cell receptor is necessary and sufficient for recognition of peptides presented by major histocompatibility complex molecules. Other adhesion molecules, like CD4 or CD8, play an auxiliary role in antigen recognition by T cells. Here we analyse T-cell receptor (TCR) binding using a soluble rather than a cell-bound receptor molecule. A TCR-immunoglobulin chimaera is constructed with the variable and the first constant regions of both the TCR alpha- and beta-chains linked to the immunoglobulin light-chain constant regions. This soluble TCR is expressed, assembled and secreted as an alpha beta heterodimer by a myeloma cell line transfected with the recombinant genes. Furthermore, the soluble TCR is biologically active: it specifically inhibits antigen-dependent activation of the relevant T-cell clones and thus discriminates between proper and irrelevant peptides presented by major histocompatibility complex molecules.  相似文献   

7.
D R Littman  S N Gettner 《Nature》1987,325(6103):453-455
The T-cell surface glycoprotein, CD4, is expressed predominantly on helper T cells and is thought to play a major role in cell-cell interactions. Monoclonal antibodies against CD4 have been shown to block numerous T-cell functions; moreover, recent results suggest that the CD4 molecule may be involved in transmembrane signal transduction. The human CD4 glycoprotein has also been shown to form at least part of the receptor for the AIDS virus, HIV-1. Elucidation of the functions of CD4 will be facilitated by the ability to manipulate the protein by genetic means. Because the mouse system is well suited for a variety of functional studies, we have isolated, sequenced and expressed cDNA clones encoding the murine CD4 (L3T4) glycoprotein. Comparison of the mouse and human CD4 sequences reveals striking evolutionary conservation of the cytoplasmic domain, suggesting that this region is essential for CD4 function. In addition, both the human and mouse CD4 gene contain a large intron in the coding region of the V-like domain. As no other members of the immunoglobulin gene superfamily have been shown to contain similarly placed introns, this finding may have important implications regarding the evolution of this gene family in particular and of introns in general.  相似文献   

8.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

9.
Z Dembi?  W Bannwarth  B A Taylor  M Steinmetz 《Nature》1985,314(6008):271-273
Serological and molecular genetic analyses of T-cell clones have shown that the T-cell antigen receptor apparently comprises two glycosylated, disulphide-linked polypeptide chains (alpha and beta), both of which span the cell membrane. Cloning of the genes encoding the two chains from mouse and human DNA has shown that the alpha- and beta-chains are composed of variable (V) and conserved (C) regions in agreement with peptide mapping data. Gene segments encoding variable and conserved domains of the beta-chain have been identified and undergo rearrangements during T-cell differentiation. The genes encoding the alpha-chain, so far described at the level of complementary DNA clones, also identify DNA rearrangements. Thus, the genes encoding the T-cell receptor show the same structure and dynamic behaviour as immunoglobulin genes, indicating that the two gene families belong to the same supergene family; this evolutionary relationship is supported by the fact that the genes encoding the beta-chain of the T-cell receptor are closely linked to immunoglobulin kappa light-chain genes on chromosome 6 in mouse. In man, however, the beta genes map to chromosome 7 (ref. 14) whereas the kappa-chain genes are located on chromosome 2, indicating that linkage between the two gene families is not needed for proper expression. Here we describe genomic clones encoding the constant portion of the T-cell receptor alpha-chain and map the gene to chromosome 14 in mouse, close to the gene for purine nucleoside phosphorylase (Np-2) which, in man, has been associated with T-cell immunodeficiencies.  相似文献   

10.
P Johnson  A F Williams 《Nature》1986,323(6083):74-76
The CD8 antigen is a marker for T-lymphocyte subsets that is absent from helper T cells but expressed on cytotoxic T cells which recognize foreign determinants in association with class I major histocompatibility complex (MHC) antigens. It has been suggested that CD8 plays some part in recognition by CD8+ cytotoxic T cells since anti-CD8 antibodies can block their functions and the human CD8 antigen contains a domain with clear similarities to immunoglobulin and T-cell receptor (TCR) variable-region (V) domains. Human CD8 antigen is thought to be a homodimer but in the mouse and rat the equivalent antigens (alternatively called Lyt2,3 and OX8) are heterodimeric. Rat CD8 contains two chains of relative molecular mass 32,000 (32K) and 37K: the 32K chain is the rat homologue of human CD8 and mouse Lyt2. We describe here the molecular cloning of the rat 37K chain using an oligonucleotide probe predicted from peptide sequence. The full protein sequence is derived from the complementary DNA and matches limited peptide sequence for mouse Lyt3. The new sequence is more like immunoglobulin and T-cell receptor V domains than other T-cell antigens and includes a patch that is almost identical to some joining (J) piece sequences. This suggests that the CD8 and receptor heterodimers may have evolved directly from a common ancestor.  相似文献   

11.
The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.  相似文献   

12.
T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV   总被引:45,自引:0,他引:45  
Many viruses, including retroviruses, are characterized by their specific cell tropism. Lymphadenopathy-associated virus (LAV) is a human lymphotropic retrovirus isolated from patients with acquired immune deficiency syndrome (AIDS) or related syndromes, that displays selective tropism for a subset of T lymphocytes defined by the expression of a surface glycoprotein of relative molecular mass 62,000 (62K) termed T4 (refs 6-8). This glycoprotein delineates a subset of T lymphocytes with mainly helper/inducer functions, while T lymphocytes of the reciprocal subset express a glycoprotein termed T8, have mainly cytotoxic/suppressor activities, and are unable to replicate LAV. Such a tropism may be controlled at the genomic level by regulatory sequences, as described for the human T-cell leukaemia viruses HTLV-I and -II (refs 2, 3). Alternatively or concomitantly, productive cell infection may be controlled at the membrane level, requiring the interaction of a specific cellular receptor with the virus envelope, as demonstrated recently for Epstein-Barr virus (EBV). Therefore, we have investigated whether the T4 molecule itself is related to the receptor for LAV. We report here that preincubation of T4+ lymphocytes with three individual monoclonal antibodies directed at the T4 glycoprotein blocked cell infection by LAV. This blocking effect was specific, as other monoclonal antibodies--such as antibody to histocompatibility locus antigen (HLA) class II or anti-T-cell natural killer (TNK) target--directed at other surface structures strongly expressed on activated cultured T4+ cells, did not prevent LAV infection. Direct virus neutralization by monoclonal antibodies was also ruled out. These results strongly support the view that a surface molecule directly involved in cellular functions acts as, or is related to, the receptor for a human retrovirus.  相似文献   

13.
A Winoto  S Mjolsness  L Hood 《Nature》1985,316(6031):832-836
The vertebrate immune system uses two kinds of antigen-specific receptors, the immunoglobulin molecules of B cells and the antigen receptors of T cells. T-cell receptors are formed by a combination of two different polypeptide chains, alpha and beta (refs 1-3). Three related gene families are expressed in T cells, those encoding the T-cell receptor, alpha and beta, and a third, gamma (refs 4-6), whose function is unknown. Each of these polypeptide chains can be divided into variable (V) and constant (C) regions. The V beta regions are encoded by V beta, diversity (D beta) and joining (J beta) gene segments that rearrange in the differentiating T cell to generate V beta genes. The V gamma regions are encoded by V gamma, J gamma and, possibly, D gamma gene segments. Studies of alpha complementary DNA clones suggest that alpha-polypeptides have V alpha and C alpha regions and are encoded by V alpha and J alpha gene segments and a C alpha gene. Elsewhere in this issue we demonstrate that 18 of 19 J alpha sequences examined are distinct, indicating that the J alpha gene segment repertoire is much larger than those of the immunoglobulin (4-5) or beta (14) gene families. Here we report the germline structures of one V alpha and six J alpha mouse gene segments and demonstrate that the structures of the V alpha and J alpha gene segments and the alpha-recognition sequences for DNA rearrangement are similar to those of their immunoglobulin and beta-chain counterparts. We also show that the J alpha gene-segment organization is strikingly different from that of the other immunoglobulin and rearranging T-cell gene families. Eighteen J alpha gene segments map over 60 kilobases (kb) of DNA 5' to the C alpha gene.  相似文献   

14.
Antigen-specific interaction between T and B cells   总被引:26,自引:0,他引:26  
A Lanzavecchia 《Nature》1985,314(6011):537-539
It is well known that B cells require T-cell help to produce specific antibody. Classic experiments suggested that antigen-specific helper T cells interact with antigen-specific B cells via an antigen 'bridge', the B cells binding to one determinant on an antigen molecule (the 'hapten'), while the T cells at the same time recognize another determinant (the 'carrier'). T-helper cells bind specifically to antigen-presenting cells (APC), which have picked up and processed the appropriate antigen, and this interaction, like the interaction of T-helper cells with specific B cells, is restricted by products encoded by the major histocompatibility complex (MHC). Whereas conventional APC such as macrophages display no binding specificity for antigen, B cells have clonally distributed antigen-specific surface immunoglobulin receptors which would be expected to enhance their capacity to present antigen to T cells. These findings are difficult to reconcile with the simple 'antigen bridge' mechanism of interaction, because it is hard to visualize how the bimolecular complex (processed antigen plus MHC molecule) on the APC surface can resemble the trimolecular complex (antigen bound to surface immunoglobulin plus MHC molecule) on the B-cell surface. To address this problem, we have cloned and immortalized human antigen-specific B cells with Epstein-Barr virus (EBV) and analysed their interaction with T-cell clones specific for the same antigen. We report here that surface immunoglobulin is indeed involved in the uptake and concentration of antigen, allowing specific B cells to present antigen to T cells with very high efficiency. However, the antigen must first be internalized and processed by specific B cells and it is then presented to T cells in an MHC-restricted manner indistinguishable from that characteristic of conventional APC.  相似文献   

15.
S Fujimoto  H Yamagishi 《Nature》1987,327(6119):242-243
The genes for the T-cell receptor, like the immunoglobulin genes, are rearranged as DNA. The mechanism of this rearrangement is not clear; unequal crossover between chromosomes and the looping-out and excision of the excess DNA have both been suggested. We isolated small polydisperse circular (spc) DNAs from mouse thymocytes and cloned them into a phage vector. Of the 56 clones we analysed, nine contained sequences homologous to T-cell receptor alpha-chain joining (J alpha) segments. We have characterized one of these clones; it contains one J alpha segment, and the product out of the recombination of a variable region of the alpha-chain gene (V alpha) with a J alpha gene segment. This is the first demonstration of the presence in extrachromosomal DNA of a reciprocal recombination product of any rearranging immunoglobulin or T-cell receptor gene. The finding verifies that V alpha-J alpha joining can occur by the looping-out and excision of chromosomal DNA.  相似文献   

16.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

17.
18.
Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2   总被引:17,自引:0,他引:17  
Semaphorins are a family of phylogenetically conserved soluble and transmembrane proteins. Although many soluble semaphorins deliver guidance cues to migrating axons during neuronal development, some members are involved in immune responses. For example, CD100 (also known as Sema4D), a class IV transmembrane semaphorin, signals through CD72 to effect nonredundant roles in immune responses in a ligand-receptor system that is distinct from any seen previously in the nervous system. Here we report that the class IV semaphorin Sema4A, which is expressed in dendritic cells and B cells, enhances the in vitro activation and differentiation of T cells and the in vivo generation of antigen-specific T cells. Treating mice with monoclonal antibodies against Sema4A blocks the development of an experimental autoimmune encephalomyelitis that is induced by an antigenic peptide derived from myelin oligodendrocyte glycoprotein. In addition, expression cloning shows that the Sema4A receptor is Tim-2, a member of the family of T-cell immunoglobulin domain and mucin domain (Tim) proteins that is expressed on activated T cells.  相似文献   

19.
The precise molecular structure of the antigenic determinant recognized by the T-cell receptor of the CD4-positive cell has not been completely resolved. A major advance in our understanding of this issue has been made by our demonstration of a direct association between an immunogenic peptide and a purified Ia molecule. The most likely and economical hypothesis is that antigen binds directly to an Ia molecule creating the antigenic determinant and that this antigen-Ia complex is recognized by the T-cell receptor. We examined in detail a determinant of hen egg-white lysozyme (HEL) contained in the tryptic fragment HEL(46-61), recognized by T cells in H-2k strains of mice. This peptide binds with a Kd of approximately 3 microM to I-Ak molecules. We have already ascertained that (1) the 10-mer HEL(52-61) is the shortest stimulatory peptide; (2) the Leu56 residue, the only residue different from mouse lysozyme, is responsible for the immunogenicity; (3) the Leu56 and Tyr53 residues are critical for recognition by the T-cell receptor and (4) HEL(46-61) generates multiple determinants when it associated with the I-Ak molecule. If antigen and Ia interact, the antigen must have two features: it must bind to an Ia molecule and also interact with the T-cell receptor. The two sites do not appear to be laterally separable in this peptide and are therefore probably composed of distinct but interspersed amino-acid residues. We have now identified the three residues of HEL(52-61) that contact the T-cell receptor and three other residues that contact the I-Ak molecule. From modelling studies we also propose that HEL(52-61) assumes an alpha-helical conformation as it is bound to I-Ak and recognized by the T-cell receptor.  相似文献   

20.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号