首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
车距检测在智能交通系统中起着重要的作用.研究提出一种基于图像处理技术的汽车追尾碰撞预警方法,利用图像传感器在驾驶过程中实时监测汽车与附近车辆的距离.该技术通过CCD摄像头摄入车辆前方道路状况,由计算机进行主要的数据处理,以现有的车牌定位技术为基础计算车牌面积,根据透视原理判断车辆间是否保持安全距离.当距离过近时,系统将发出警报提醒驾驶员保持车距.  相似文献   

2.
针对目前市场上车辆安全预警系统价格高昂、系统复杂和虚警频繁等难以普及推广的现状,提出了一种基于双CCD立体摄像技术的车辆安全预警系统.该系统通过双CCD摄像头进行图像获取和相对车距的检测,利用FPGA技术进行图像处理与识别,并能实时监测本车前方的车辆与行人等障碍物,可有效地提高车辆在高速行驶时的主动安全性能.通过MATLAB在计算机上对图片中的车辆和行人等障碍物进行图像识别的模拟仿真,达到了预期效果.  相似文献   

3.
基于单目视觉的跟驰车辆车距测量方法   总被引:1,自引:0,他引:1  
为了解决结构化道路上跟驰车辆的防追尾碰撞问题,首先在对车辆制动模型进行分析的基础上得到了车辆制动距离的计算公式,进而计算出跟驰车辆与前方车辆之间的安全距离.然后,从针孔模型摄像机成像的基本原理出发,推导出基于图像中车道线消失点的车距测量公式.车距测量结果只与图像中的近视场点到摄像机的实际距离有关,无需对所有的摄像机参数进行标定,从而解决了单目视觉车距测量问题.最后,完成了不同距离处前方车辆的车距测量试验.试验结果表明,该方法的车距测量相对误差小于3%,具备了较高的检测精度,能够满足跟驰车辆防追尾碰撞的应用要求.  相似文献   

4.
为提高汽车安全辅助驾驶系统对前方车辆识别的准确性和实时性,提出了一种基于摄像头和毫米波雷达信息融合的前方车辆检测方法。首先将毫米波雷达和摄像头进行联合标定,并确定两个传感器坐标系之间的相互转化关系,对毫米波雷达数据进行预处理快速分割图像,以获得前方车辆识别的感兴趣区域;然后采用自适应阈值对感兴趣区域内的图像进行二值化处理以获得车辆底部阴影信息,利用边缘检测和霍夫变换得到车辆上下边界的位置信息;通过底部阴影和上下边界信息获得车辆识别的高度与宽度,最后根据车辆对称性特征建立识别窗口。试验验证表明,该方法前方车辆检测准确率为90.2%,单帧图像的处理速度为32 ms,能够满足智能汽车应用中的实时性和准确性的要求。  相似文献   

5.
为了解决主动安全研究中车辆在行驶过程中与前车的碰撞危险判定问题,该文提出了一种车辆碰撞模型。基于针孔成像原理,分析图像中目标车辆与世界坐标系中实际车辆的映射关系。检测图像中路面消失点与车辆底部的位置,并以其差值作为车辆尺寸特征。分析多帧图像中车辆目标尺寸特征的变化规律,从而分析出车辆行进趋势,并估算出前车同本车的相对碰撞时间。该碰撞模型既为驾驶员反馈了碰撞时间信息,又通过分析加速度避免虚警。与已有模型相比较,该文模型在车辆距离大于30 m时效果不稳定,在距离小于30 m时误差低于5%。实验结果表明该模型具备较强的实用性与准确性。  相似文献   

6.
提出了一种基于车辆行为识别的汽车前方碰撞预警方法.利用单目视觉,首先采用基于梯度方向直方图特征和支持向量机的方法识别前方车辆,并结合卡尔曼滤波进行车辆跟踪;然后使用隐马尔科夫模型对车辆行为进行建模,识别前方车辆行为,并根据行为识别结果计算对应的风险评估因子;最后将风险评估因子引入碰撞风险评估系统,使碰撞预警时间比未加入风险评估因子平均提前2.04s.实车实验验证了本方法的有效性.  相似文献   

7.
当前,人们对道路安全和汽车安全的需求有增不减。该文旨在建立一个巡航控制系统,使行驶车辆在保持直行的高速公路上保持固定的速度。通过在Simulink中建立自适应巡航控制模型,模拟了实际情况中本车与前车在速度、加速度和位置方面的关系。根据从Matlab中得到的速度、加速度和相对距离的图像,论证了当两辆车保持安全距离时,本车将保持一个固定的速度。  相似文献   

8.
基于车道线识别和多特征的前车检测算法   总被引:3,自引:3,他引:0  
前车检测是安全辅助驾驶系统的主要研究领域,实时鲁棒的检测方法能够使智能车实现有效的防偏防撞预警和控制。提出了一种基于车道线识别和多特征的前车检测方法。首先基于车道线识别方法将感兴趣区域定位于两条车道线之间,然后依据车底阴影特征自适应确定中远距离车辆假设区域,最后利用纹理特征、垂直梯度投影均值和边缘对称性特征三层约束来验证车辆区域。实验结果表明:该方法能够实时准确地检测出不同光照条件下本车车道前方中远距离的车辆。  相似文献   

9.
车用多普勒雷达测速系统若干参数的选择   总被引:1,自引:0,他引:1  
介绍了一种利用多普勒雷达检测车速、车距的系统方案。对系统主要参数的选择方法进行了论证。本系统可安装在汽车上,用于雾天或夜间监测前方车辆,并在车速、车距达到临界安全值时发出报警信号,以避免交通事故的发生,确保行车安全。  相似文献   

10.
在新一代的智能汽车中,对车距测量结果存在很大的误差,主要是因为没有考虑车辆之间摄像机高度与成角对结果的影响。计算区域过大,导致性能不佳。提出引入兴趣区移动传感网络的车距测量方法,对采集设备的设计进行了详细分析。根据设备确定车辆中的感兴趣区域,在规定的感兴趣区域中,从上到下,依据水平线逐行进行扫描,求出各行灰度的平均值,通过灰度平均值的变化情况对前方车辆进行检测。在此基础上,通过路面上近视场点与CCD摄像机之间的纵向距离,依据针孔模型下的摄像机成像关系求出前方车辆和本车之间的距离。实验结果表明,这种方法对车距进行测量,不仅测量精度高,而且不受摄像机高度和角度的影响,具有很高的鲁棒性。  相似文献   

11.
基于机器视觉和激光测距的输电线故障定位   总被引:2,自引:0,他引:2  
结合定位技术和激光测距技术,提出了一种基于机器视觉的电力巡线故障定位新方法.通过无人机搭载可见光相机进行巡线拍摄,将航拍图像实时传回地面站进行处理.采用数学形态学的图像处理方法和模式识别方法进行故障检测与识别.通过惯性测量系统进行初步定位,得到无人机的经纬度坐标.利用无人机机载激光测距模块,测量故障点到无人机的距离来修正坐标.最后,经过空间大地坐标系和空间直角坐标系的变换,以及两个空间直角坐标系的基准转换,计算出了故障点的准确位置,并且很大程度地提高了定位的准确性,其空间直角坐标测量精度可达0.11m.  相似文献   

12.
基于数字图像处理的汽车测距算法研究   总被引:2,自引:0,他引:2  
测距是实现车辆安全系统的关键技术,本文在对路面图片进行数字图像处理的基础上,先对路面区域确定和汽车目标识别进行了算法改进,针对我国汽车常见车型,提出通过对图像进行等效变换,实现测量前车距离的新算法,根据实测数据,确定出相关测量系数,并给出了实验结果。  相似文献   

13.
针对汽车自主驾驶技术领域车距侦测问题,利用影像摄取硬件和软件系统,并提出一种基于单目视觉的车距侦测算法,实现了车距的实时侦测.实验证明此方法在白天、黑夜、复杂路况及天气恶劣的情况下均能稳定运行,且此算法有效减少了Hough运算量,具有较强鲁棒性及实时性.  相似文献   

14.
基于机器视觉的汽车远近光灯的自适应切换算法   总被引:1,自引:1,他引:0  
低续航车辆由于里程所限,多行驶于无中分隔离带的市区和市郊区域。针对该路况下夜间行驶中,驾驶员易出现会车等情况下未按法规正确进行远近光灯切换的现象,提出了一种基于视觉的远近光灯自适应切换算法。该算法利用图像处理技术对有无路灯场景、无路灯会车场景和无路灯且前车距本车较近场景这三种情况进行识别,并给出与场景规则最相符的灯光使用指示。实验表明,该算法能实时有效的给出远近光灯的切换策略,既保障了行车的安全性,也避免了远光灯不必要的开启,节约了汽车的电能。  相似文献   

15.
采用以TI达芬奇技术芯片为核心处理器的硬件平台,以依据硬件裁剪定制的Linux系统为基础,设计开发了基于计算机视觉的汽车安全系统.该系统具有超速预警、安全车距预警、事故求助、车辆位置获取和车辆防盗、防抢等功能,且系统体积小、功耗低、使用方便,易于功能扩展和升级,在高速公路上开展安全监测试验表明,文中提出的算法漏检率低于5%,误检率低于0.5%.   相似文献   

16.
针对当前智能车辆检测算法在实际应用中存在误差、测量结果不够准确等问题,使用基于运动车辆中车底阴影线算法的车辆检测机制,并利用车底阴影稳定存在特征解决车辆检测问题,进一步基于机器视觉的双目立体匹配测距方法实现对前方最近车辆距离测量,为智能车辆及驾驶员辅助系统提供信息。笔者采用的车底阴影线方法及双目测距最终实现结果证实,可以获取较为精确的道路前方的车辆及距离信息,有效检测距离为10 ~ 50 m,整体识别率达到85%。  相似文献   

17.
提出一种基于单目视觉的前方目标车辆图像识别与纵向安全域控制方法。利用目标车辆视频图像的小波分形特征进行图像识别,并采用粒子滤波对检测结果进行实时动态跟踪,在此基础上,结合单目机器视觉感知技术测量纵向车间距,并建立纵向安全域控制模型,最后进行了仿真分析。实验结果表明,该方法有效缓和了目标车辆图像检测准确性与实时性之间的矛盾,在保证行车安全的同时,兼顾了道路通行能力。  相似文献   

18.
为解决前方车辆识别过程中的实时性问题,提出了一种基于车牌检测的前方车辆识别方法。首先,利用图像中的路面或车道线等细节提取感兴趣区域。其次,利用HSV( Hue-Saturation-Value) 色彩空间转换与矩形图像检测从感兴趣区域中过滤光照变化,阴影和杂乱背景,从而检测出车辆的车牌信息。同时,在初次检测失败的情况下进行二次定位和验证。最后,利用检测出的车牌信息识别前方车辆。该方法在自建与公共数据库视频上进行评估。实验结果表明,识别率超过90% ,并且具有较高的实时性,证明了该方法的有效性。  相似文献   

19.
基于梯度方向恒定性的运动车辆阴影检测   总被引:3,自引:1,他引:2  
交通参数的视频检测是智能交通系统的一个研究重点,其中运动车辆的分割是视频检测过程中的一个关键环节。目前,运动车辆阴影的检测与剔除是准确、有效的分割出运动车辆所面临的一个难题。本文发现并证明了梯度方向恒定性原理,在此基础上提出了一种基于梯度方向恒定性的阴影检测与剔除方法。首先建立路面背景梯度矢量图,根据与当前帧图像的梯度矢量图的比较结果,判断是否是路面背景或是运动车辆,然后对运动车辆区域进行形态滤波,弥补内部空洞和剔除杂点,进而准确分割出车辆。试验结果表明,该方法适应性强,车辆分割效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号