首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
石墨烯宏观体具有大的比表面积和丰富的相互连接的内部孔道结构,广泛应用于锂离子电池、超级电容器等领域.现阶段多采用将石墨烯水凝胶进行冷冻干燥或二氧化碳超临界干燥的方法制备石墨烯宏观体,该方法具有一次成型、耗时短等优点,但是存在孔隙大小无法调控、设备昂贵等不足.本文以氧化石墨烯(GO)为原料制备得到石墨烯水凝胶,仅利用室温干燥和冰箱冷冻相协同的简单方法制备孔隙可调的三维石墨烯宏观体(GM).研究发现经室温部分干燥后的石墨烯水凝胶经冰箱冷冻后再进行室温完全干燥其体积几乎不发生变化,因此通过调控首次室温干燥的时间调变石墨烯宏观体的孔隙大小.此方法具有操作简单、造价低廉的优点.将所制备的GM作为锂离子电池负极材料,表现了良好的储锂性能.结果表明:首次室温干燥3h的石墨烯水凝胶再经过冰箱冷冻和第二次室温完全干燥所获得的GM(GM-3h)在0.1A·g-1电流密度下其比容量高达1039mAh·g-1远高于传统石墨负极372mAh·g-1的比容量;在0.5A·g-1的电流密度下经100次循环后,其比容量降低到504mAh·g-1,保持率为73.1%,表现了良好的循环稳定性.  相似文献   

2.
为了缓解二氧化硅(SiO_2)负极材料的体积膨胀开裂,改善其电化学性能,通过溶胶-凝胶法制备出三维网状结构的SiO_2气凝胶纳米材料及其石墨烯改性材料(rGO/SiO_2)和碳纳米管改性材料(CNT/SiO_2),研究石墨烯和碳纳米管改性对SiO_2气凝胶负极材料的储锂性能影响.利用X射线衍射分析仪、光电子能谱仪和扫描电子显微镜进行表征.电化学性能研究表明,石墨烯和碳纳米管改性提高了SiO_2气凝胶负极材料的导电性、充放电比容量和库伦效率,其中CNT/SiO_2提升作用更加显著,循环稳定性能最好.因此,在减轻材料体积膨胀和结构开裂、粉化,增加SiO_2气凝胶负极材料的导电性方面,碳纳米管改性优于石墨烯改性.  相似文献   

3.
综述石墨烯气凝胶的制备方法及石墨烯基气凝胶作为吸附材料在空气净化领域中的应用现状,总结目前石墨烯气凝胶材料存在的问题,并对石墨烯气凝胶在空气净化吸附方面的未来发展方向提出展望。结果表明:石墨烯气凝胶是一种具有大比表面积、高孔隙率、多吸附位点的良好空气净化材料,经改性后的石墨烯气凝胶对气体污染物具有可观的化学吸附能力,结合自身物理吸附性能,成为了近年来备受关注的空气净化材料之一。  相似文献   

4.
采用树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯4种气凝胶作为前驱体,经直接碳化后获得了氮掺杂连续的纳米碳.研究了聚苯胺基气凝胶衍生纳米碳的微观形貌结构、元素组成以及电化学性能.结果表明,树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯气凝胶衍生的纳米碳具有连续的多级孔结构,其比表面积分别为273.9、487.7、241.4和295.9 m2·g-1,氮的摩尔分数分别高达7.82%、9.62%、7.91%和10.17%,在0.5 A·g-1的电流密度下分别具有高达268、311、280和362 F·g-1的质量比电容,且倍率性能和循环稳定性能优异.  相似文献   

5.
气凝胶材料的研究进展   总被引:1,自引:0,他引:1  
气凝胶材料是一种由纳米粒子或聚合物分子链组成的具备三维纳米结构的多孔材料,具有低密度、高孔隙率、高孔体积和高比表面积等结构特点,显现出优异的光、热、声、电和力学等特性,在航空航天、石油化工、环境保护、建筑保温、能量储存与转化等领域具有广泛的应用价值。迄今为止,气凝胶的种类已由最初的SiO_2气凝胶发展到了具有特定功能的各类新型气凝胶,从而有效拓宽了气凝胶的应用范围。气凝胶材料通常采用溶胶-凝胶、老化、溶剂置换并结合超临界干燥、冷冻干燥或常压干燥等过程制备。气凝胶材料按照组成可以分为单组分气凝胶和多组分气凝胶,其中单组分气凝胶主要包括氧化物气凝胶、碳化物气凝胶、氮化物气凝胶、石墨烯气凝胶(GA)、量子点气凝胶、聚合物基有机气凝胶、生物质基有机及C气凝胶和其他种类气凝胶,而多组分气凝胶由两种及以上单组分气凝胶构成或者由纤维、晶须、纳米管等作为增强体所形成的气凝胶复合材料。本文主要介绍各类单组分及其复合气凝胶材料的制备方法及其在隔热、吸附、催化、储能转化和生物医用等领域的应用,对近年来气凝胶在制备及应用方面所取得的突破性进展进行了综述。同时也指出在基础研究方面亟需通过理论计算和实验研究相结合,实现气凝胶网络结构生长调控、表面组成及化学结构调控和高温组织结构稳定性调控;在功能型气凝胶材料开发方面,通过反应机制深入研究气凝胶材料结构和性能关联,实现高性能的多功能型气凝胶材料突破性进展;在规模化应用方面,寻找成本低廉的前驱体原料和降低气凝胶干燥成本是气凝胶产业化进程长远发展的关键。  相似文献   

6.
为了研究水热温度对3D石墨烯形貌以及蛋白吸附能力的影响,采用水热合成法制备3D石墨烯,在反应时间和反应试剂浓度一定的条件下,改变温度(100、150和200℃)制备具有不同形貌的3D石墨烯.利用游标卡尺、扫描电子显微镜、傅里叶红外光谱和拉曼光谱分析法对不同温度下制备所得3D石墨烯的结构及内部化学键进行表征,利用蛋白电泳实验分析3D石墨烯的蛋白吸附能力.实验结果表明:从宏观角度看,随着水热温度的增加,3D石墨烯圆柱体材料的高度和底面直径变小,宏观总体积随之变小;从微观角度看,随着水热温度的增加,材料内部孔洞变得更加狭小,结构也变得更加紧密结实.在水热反应的过程中,温度越高还原反应越剧烈,因此,200℃条件下所得3D石墨烯的蛋白吸附能力较强.  相似文献   

7.
锂离子电池中硅基负极材料具有极高理论容量和低充放电电压平台,作为代替石墨的最佳负极材料,成为当下研究中热门的锂电池负极材料。设计中空硅球/石墨烯复合材料,H-Si球与氧化石墨烯水热条件下形成三维多孔石墨烯气凝胶内嵌硅球复合物(H-Si/GA),H-Si球与聚二烯丙基二甲基氯化铵(poly dimethyl diallyl ammonium,PDDA)功能化的氧化石墨烯溶剂热条件下静电吸附形成包覆状复合物(H-Si/G)。借助结构表征和电性能测试,硅球与石墨烯紧密包覆状的H-Si/G展示出更佳的电性能。中空硅球由于静电吸附作用嵌入石墨烯纳米片中,石墨烯牢牢固定硅球,构建了稳定的导电通道,缓冲体积膨胀,并保持电极结构稳定。硅球内部的空隙空间为体积膨胀预留足够缓冲空间,缩短了电子和离子传输通道。  相似文献   

8.
用具有环境友好性的甲基三乙氧基硅烷(MTES)替代甲基三甲氧基硅烷,在水溶剂体系中,利用阳离子表面活性剂制备SiO_2气凝胶基体,并以耐高温的聚酰亚胺短切纤维为增强相,制备得到了柔性疏水的SiO_2气凝胶复合隔热材料。研究了聚酰亚胺短切纤维含量对复合材料热、力学性能的影响。结果表明:制备得到的SiO_2气凝胶复合材料具有纤维状三维骨架结构并且气凝胶基体与增强相之间结合紧密,使得复合材料具有超疏水性,疏水角高达171°;具有良好的隔热保温性能,导热系数在0.021~0.022 5 W/(m·K),初始热分解高达521℃;具有较好的弹性,压缩20%形变后样品未发生增强相与基体的分离现象,并且卸压后能回弹至12%形变处。随着纤维含量的增加,复合材料里压缩强度(20%形变)逐渐增大,但是回弹率并没有较大的变化。  相似文献   

9.
还原氧化石墨烯(rGO)气凝胶因其丰富的导电网络和复杂的内部微观结构,以及与其他电磁衰减组分的良好兼容性,可以用作高效微波吸收材料,以缓解日益严重的电磁污染问题。然而,rGO气凝胶损耗单一,无法在自由空间中产生匹配良好的特性阻抗,使得电磁波难以在材料内部发生有效衰减。本文旨在开发一种具有多功能特性的Mo2C修饰rGO气凝胶复合材料作为高效微波吸收材料。本文通过水热组装、冷冻干燥和高温热解过程,制备了Mo2C纳米颗粒修饰的rGO气凝胶复合材料,研究了组成变化对复合材料形貌、结构和性能的影响。结果表明,当Mo2C/rGO气凝胶质量填充为9%时,在7.3 GHz处最小反射损耗值可达到?63.3 dB,最大有效吸收带宽为5.1 GHz。优异吸波性能主要来自于Mo2C纳米颗粒带来的衰减能力和阻抗匹配之间的良好平衡,尽管相对复介电常数随着Mo2C负载的增加而逐渐减小导致介电损耗下降,但Mo2C优化了电磁波入射界面处的阻抗匹配特性。引入Mo2C纳米颗粒后,rGO气凝胶的疏水性和隔热性也得到了有效改善。本文中Mo2C纳米颗粒对多功能特性的积极影响增强了Mo2C/rGO气凝胶的环境适用性,使其成为多功能高性能微波吸收材料的候选材料。  相似文献   

10.
李慧 《科学技术与工程》2021,21(5):1696-1700
气凝胶作为一种新型隔热材料,其内部结构的复杂性导致其在压缩和拉伸时呈现出不同的性能.以缝合式气凝胶材料为研究对象,首先通过气凝胶面外拉伸和压缩试验,准确获得气凝胶材料的本构关系;然后开展缝合式气凝胶在拉伸和压缩载荷下的失效分析研究.结果 表明:气凝胶面外压缩因结构致密化而呈现出非线性行为,失效载荷约为1 015.59 N;气凝胶在面外拉伸时几乎不承受载荷,载荷主要由缝合线承担,失效载荷约为1 026.4 N;缝合线的失效形式主要为缝合线两端的拉伸或压缩断裂失效,且不会发生屈曲失稳.  相似文献   

11.
本文用具有环境友好性的甲基三乙氧基硅烷替代甲基三甲氧基硅烷,在水溶剂体系中,利用阳离子表面活性剂制备SiO2气凝胶基体,并以耐高温的聚酰亚胺短切纤维为增强相,制备得到了柔性疏水的SiO2气凝胶复合隔热材料。研究了聚酰亚胺短切纤维含量对复合材料热、力学性能的影响。结果表明:制备得到的SiO2气凝胶复合材料具有纤维状三维骨架结构并且气凝胶基体与增强相之间结合紧密,使得复合材料具有超疏水性,疏水角高达171°;具有良好的隔热保温性能,导热系数在0.021 W/(m·K)~0.0225 W/(m·K)之间,初始热分解高达521℃;具有较好的弹性,压缩20%形变后样品未发生增强相与基体的分离现象,并且卸压后能回弹至12%形变处。随着纤维含量的增加,复合材料里压缩强度(20%形变)逐渐增大,但是回弹率并没有较大的变化。  相似文献   

12.
聚酰亚胺(polyimide,PI)具有优异的热稳定性、机械性能、电学性能和化学稳定性。石墨烯(Graphene,G)具有优良的物理和化学特性,是一种良好的复合材料的增强材料。将石墨烯及其衍生物纳米片填充到聚酰亚胺材料中,制备复合材料,能很大程度提升聚酰亚胺复合材料的性能(力学、热力学、电学等性能),以满足随着高新科技的发展带来产品制造对材料性能的要求。综述了近年来国内外有关石墨烯及其衍生物改性聚酰亚胺制备复合材料的研究进展,重点阐述了石墨烯的制备及改性方法、复合材料的制备方法及性能,最后对复合材料的发展趋势和应用前景进行了展望。  相似文献   

13.
采用溶胶-凝胶法和二氧化硅粒子掺杂共混法分别制备了聚酰亚胺/SiO2杂化膜和纳米复合膜.采用红外分光光度计(FTIR)、热重分析仪(TGA)和透射电镜(TEM)表征了所制备膜的结构微观形态和热性能并进行分析对比,结果表明在杂化膜中SiO2在聚酰亚胺基体中可以形成分子级分散,复合膜表现出较强的吸湿性使其热分解温度较低.研究认为,采用溶胶-凝胶法制备聚酰亚胺/SiO2介电材料更为合理.  相似文献   

14.
采用溶胶-凝胶法和CO2超临界干燥工艺,并经高温热处理过程得到C-Al2O3复合气凝胶。通过N2吸附-脱附实验研究热处理对气凝胶孔结构参数的影响;利用X线衍射技术表征气凝胶在热处理过程中的相结构变化;采用扫描电子显微镜观察气凝胶的微观形貌,并对气凝胶进行强度测试。结果表明:C-Al2O3复合气凝胶具有均匀的三维网络结构,而且成块性好,热处理后C-Al2O3复合气凝胶仍然具有高的比表面积。C-Al2O3复合气凝胶的最高压缩强度可达9.07 MPa,大大提高了气凝胶材料的力学性能。  相似文献   

15.
综述了Fe_3O_4、Fe_2O_3、NiO、Co_3O_4、CoO、CuO等多种金属氧化物通过水热、溶剂热、共沉淀、原子层沉积、溶胶凝胶及高温退火和微波辅热等多种合成策略和制备方法得到不同尺寸如纳米级和微米级,不同形貌如颗粒状、棒状、孔状、球状、层状、花状等不同维度金属氧化物以不同的方式如嵌入、卷入、植入修饰石墨烯,形成了层状结构、三明治结构、中空核壳状结构和混合结构等形式的金属氧化物/石墨烯复合物.并把它们应用于锂离子电池的负极材料,其电化学性能如容量、倍率、循环等性能相对于纯石墨烯和纯金属氧化物得到了提升.最后分析了金属氧化物/石墨烯复合物的制备材料、制备方法对最终产物的影响,讨论了金属氧化物和石墨烯的协同效应和复合机理以及石墨烯复合物性能的影响,展望了金属氧化物/石墨烯复合物作为锂离子电池电极材料的应用和开发前景.  相似文献   

16.
香精与人们的生活有着紧密的联系,具有消毒杀菌、改善环境、使人舒适的作用。香精与热、光、空气或金属污染物反应产生氧化、聚合、脱氢和热重排而导致物理化学性质发生变化,微囊包封固化或吸附剂表面吸附可以解决这些问题。石墨烯气凝胶具有较大的比表面积、柔韧性、热和化学稳定性,是目前被广泛研究的吸附剂。介绍了石墨烯气凝胶的制备方法和吸附机制,与传统吸附剂的香精吸附效果进行了比较,展望了石墨烯气凝胶在香精吸附领域的应用前景。  相似文献   

17.
利用溶胶凝胶法和超临界干燥技术合成了聚酰亚胺(PI)气凝胶,并将PI气凝胶在800℃下进行煅烧,再以煅烧生成的含氮碳气凝胶(C(N))与PI气凝胶复合制备具有高比表面积和独特孔结构的C(N)/PI气凝胶复合材料,用于光催化降解土霉素.结果显示,相比PI气凝胶,C(N)/PI气凝胶复合材料既具有较大的比表面积,又同时含有...  相似文献   

18.
以正硅酸乙酯(TEOS)、仲丁醇铝(ASB)为前驱体,采用溶胶-凝胶及超临界干燥工艺,分别制备硅酸铝纤维(ASF)、Al_2O_3纤维(AF)和莫来石纤维(MF)增强Al_2O_3-SiO_2气凝胶(ASC)隔热复合材料,并对材料的微观结构、耐温性、高温热导率和力学性能进行研究。结果表明:纳米多孔Al_2O_3-SiO_2气凝胶均匀填充到纤维间的孔隙中,并紧密包裹在纤维的表面,显著减少了纤维间的搭接,Al_2O_3-SiO_2气凝胶隔热复合材料中的纤维增强相发挥了增强、增韧功能。纤维种类对材料耐温性、高温热导率有较大的影响,对力学性能影响较小,AF/ASC和MF/ASC复合材料耐温性能较高,经1 200℃、30 min热处理后,材料厚度方向平均线收缩率分别为-2.5%和2.7%;MF/ASC复合材料的热导率较低,当热面温度为1 100℃时热导率达到0.065 W/(m·K);3种纤维增强Al_2O_3-SiO_2气凝胶隔热复合材料的力学性能相当,材料3%应变的压缩应力分别为0.22、0.21和0.19 MPa。  相似文献   

19.
采用改进的Hummers法制备出氧化石墨烯(GO),再通过超声分散将实验室自制的改性碳纳米管(CNTs)与GO在水溶液均匀混合,通过冷冻干燥得到CNTs/GO气凝胶材料.采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD)对其形貌和结构进行表征,结果表明CNTs:GO的质量比为3:7时得到的气凝胶的孔隙最大且最均匀,适合做与聚合物材料复合的基体材料.  相似文献   

20.
采用Hopkinson压杆对玻璃纤维增强气凝胶进行动态压缩实验,通过精确控制试样应变"冻结"气凝胶压缩过程,对不同应变下的实验材料进行孔结构测试和显微分析. 结果表明,在动态变形过程中玻璃纤维增强气凝胶的纳米多孔网状结构遭到破坏,玻璃纤维逐渐断裂,气孔缩小以致孔穴坍塌,气孔之间的连通性变差,胶体粒子之间的排列更加紧密. 玻璃纤维增强气凝胶在动态压缩下破坏的临界应变约为0.80,并具有明显的应变率强化效应. 动态压缩过程中孔壁受到横向张应力的升高和胶体粒子之间的高速碰撞导致玻璃纤维增强气凝胶的破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号