首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Bajorath  S Raghunathan  W Hinrichs  W Saenger 《Nature》1989,337(6206):481-484
The X-ray crystal structure of the subtilisin-type enzyme proteinase K at 1.5 A resolution shows that is has two binding sites for Ca2+. Scatchard analysis indicates that one Ca2+ binds tightly, with pK 7.6 x 10(-8) M-1, and the other only weakly. Although Ca2+ is not directly involved in the catalytic mechanism and is 16.6 A away from the alpha-carbon atoms of the catalytic triad Asp 39-His 69-Ser 224, the activity of proteinase K towards the synthetic substrate succinyl-Ala-Ala-Ala-p-nitroanilide drops slowly to approximately 20% of its original value when it is depleted of Ca2+. This is not due to autolysis of the enzyme. The X-ray crystal structure of Ca2+-free proteinase K shows that removal of Ca2+ from the tight binding site triggers a concerted domino-like movement of five peripheral loops and of two alpha-helices. At a distance of 25 A from this calcium-binding site, the geometry of both the secondary substrate binding site and of the catalytic triad is affected by this movement thereby reducing the activity of the enzyme.  相似文献   

2.
Toyoshima C  Nakasako M  Nomura H  Ogawa H 《Nature》2000,405(6787):647-655
Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 A resolution with two calcium ions bound in the transmembrane domain, which comprises ten alpha-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for efficient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence of calcium and with biochemical data suggests that large domain movements take place during active transport.  相似文献   

3.
van den Akker F  Zhang X  Miyagi M  Huo X  Misono KS  Yee VC 《Nature》2000,406(6791):101-104
The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-A resolution. The monomer comprises two interconnected subdomains, each encompassing a central beta-sheet flanked by alpha-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.  相似文献   

4.
Structure and conserved RNA binding of the PAZ domain   总被引:1,自引:0,他引:1  
Yan KS  Yan S  Farooq A  Han A  Zeng L  Zhou MM 《Nature》2003,426(6965):468-474
The discovery of RNA-mediated gene-silencing pathways, including RNA interference, highlights a fundamental role of short RNAs in eukaryotic gene regulation and antiviral defence. Members of the Dicer and Argonaute protein families are essential components of these RNA-silencing pathways. Notably, these two families possess an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose biochemical function is unknown. Here we report the nuclear magnetic resonance solution structure of the PAZ domain from Drosophila melanogaster Argonaute 1 (Ago1). The structure consists of a left-handed, six-stranded beta-barrel capped at one end by two alpha-helices and wrapped on one side by a distinctive appendage, which comprises a long beta-hairpin and a short alpha-helix. Using structural and biochemical analyses, we demonstrate that the PAZ domain binds a 5-nucleotide RNA with 1:1 stoichiometry. We map the RNA-binding surface to the open face of the beta-barrel, which contains amino acids conserved within the PAZ domain family, and we define the 5'-to-3' orientation of single-stranded RNA bound within that site. Furthermore, we show that PAZ domains from different human Argonaute proteins also bind RNA, establishing a conserved function for this domain.  相似文献   

5.
Comparison of the crystal structure of inactive unliganded trp aporepressor with that of trp repressor shows that binding tryptophan activates the dimer a thousandfold by moving two symmetrically-disposed flexible bihelical motifs. These flexible 'DNA-reading heads' flank a highly inflexible core domain formed by an unusual arrangement of interlocking alpha-helices from both subunits.  相似文献   

6.
7.
Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic alpha/beta chain T-cell antigen receptor. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence, whereas the other considers peptide conformation and predicts antigenicity for amphipathic alpha-helices. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone.  相似文献   

8.
9.
10.
11.
Lee SJ  Matsuura Y  Liu SM  Stewart M 《Nature》2005,435(7042):693-696
Nuclear protein import is mediated mainly by the transport factor importin-beta that binds cytoplasmic cargo, most often via the importin-alpha adaptor, and then transports it through nuclear pore complexes. This active transport is driven by disassembly of the import complex by nuclear RanGTP. The switch I and II loops of Ran change conformation with nucleotide state, and regulate its interactions with nuclear trafficking components. Importin-beta consists of 19 HEAT repeats that are based on a pair of antiparallel alpha-helices (referred to as the A- and B-helices). The HEAT repeats stack to yield two C-shaped arches, linked together to form a helicoidal molecule that has considerable conformational flexibility. Here we present the structure of full-length yeast importin-beta (Kap95p or karyopherin-beta) complexed with RanGTP, which provides a basis for understanding the crucial cargo-release step of nuclear import. We identify a key interaction site where the RanGTP switch I loop binds to the carboxy-terminal arch of Kap95p. This interaction produces a change in helicoidal pitch that locks Kap95p in a conformation that cannot bind importin-alpha or cargo. We suggest an allosteric mechanism for nuclear import complex disassembly by RanGTP.  相似文献   

12.
13.
D M Freymann  P Metcalf  M Turner  D C Wiley 《Nature》1984,311(5982):167-169
The variable surface glycoprotein (VSG) is the predominant component of the surface coat of the African trypanosome. The expression of antigenically distinct VSGs on minor populations during infection allows the parasite to escape the host immune response. Purification of the protein is facilitated by the enzymatic release of a soluble form of VSG (sVSG) which occurs on cell lysis. The soluble form is a dimer with an approximate molecular weight of 120,000-130,000. Partial proteolysis of sVSG reveals a protease-sensitive link between an amino-terminal domain which comprises about two-thirds of the molecule, and a C-terminal domain which contains the membrane attachment site. We have obtained crystals suitable for high-resolution structural analysis from preparations of three sVSG: MITat 1.2, ILTat 1.25 and ILTat 1.22. The crystal structure of the dimer of the MITat 1.2 amino-terminal domain has been solved to 6 A resolution. We report here that the dimer is an unusual 90 A rod-like molecule composed of a helical bundle of at least four 80 A-long alpha-helices.  相似文献   

14.
Chen KM  Harjes E  Gross PJ  Fahmy A  Lu Y  Shindo K  Harris RS  Matsuo H 《Nature》2008,452(7183):116-119
The human APOBEC3G (apolipoprotein B messenger-RNA-editing enzyme, catalytic polypeptide-like 3G) protein is a single-strand DNA deaminase that inhibits the replication of human immunodeficiency virus-1 (HIV-1), other retroviruses and retrotransposons. APOBEC3G anti-viral activity is circumvented by most retroelements, such as through degradation by HIV-1 Vif. APOBEC3G is a member of a family of polynucleotide cytosine deaminases, several of which also target distinct physiological substrates. For instance, APOBEC1 edits APOB mRNA and AID deaminates antibody gene DNA. Although structures of other family members exist, none of these proteins has elicited polynucleotide cytosine deaminase or anti-viral activity. Here we report a solution structure of the human APOBEC3G catalytic domain. Five alpha-helices, including two that form the zinc-coordinating active site, are arranged over a hydrophobic platform consisting of five beta-strands. NMR DNA titration experiments, computational modelling, phylogenetic conservation and Escherichia coli-based activity assays combine to suggest a DNA-binding model in which a brim of positively charged residues positions the target cytosine for catalysis. The structure of the APOBEC3G catalytic domain will help us to understand functions of other family members and interactions that occur with pathogenic proteins such as HIV-1 Vif.  相似文献   

15.
Structure and gating mechanism of the acetylcholine receptor pore   总被引:2,自引:0,他引:2  
Miyazawa A  Fujiyoshi Y  Unwin N 《Nature》2003,423(6943):949-955
The nicotinic acetylcholine receptor controls electrical signalling between nerve and muscle cells by opening and closing a gated, membrane-spanning pore. Here we present an atomic model of the closed pore, obtained by electron microscopy of crystalline postsynaptic membranes. The pore is shaped by an inner ring of 5 alpha-helices, which curve radially to create a tapering path for the ions, and an outer ring of 15 alpha-helices, which coil around each other and shield the inner ring from the lipids. The gate is a constricting hydrophobic girdle at the middle of the lipid bilayer, formed by weak interactions between neighbouring inner helices. When acetylcholine enters the ligand-binding domain, it triggers rotations of the protein chains on opposite sides of the entrance to the pore. These rotations are communicated through the inner helices, and open the pore by breaking the girdle apart.  相似文献   

16.
Three-dimensional structures of complexes of the SH2 domain of the v-src oncogene product with two phosphotyrosyl peptides have been determined by X-ray crystallography at resolutions of 1.5 and 2.0 A, respectively. A central antiparallel beta-sheet in the structure is flanked by two alpha-helices, with peptide binding mediated by the sheet, intervening loops and one of the helices. The specific recognition of phosphotyrosine involves amino-aromatic interactions between lysine and arginine side chains and the ring system in addition to hydrogen-bonding interactions with the phosphate.  相似文献   

17.
NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP.   总被引:40,自引:0,他引:40  
C Sun  M Cai  A H Gunasekera  R P Meadows  H Wang  J Chen  H Zhang  W Wu  N Xu  S C Ng  S W Fesik 《Nature》1999,401(6755):818-822
The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses, regulate programmed cell death in a variety of organisms. IAPs inhibit specific enzymes (caspases) in the death cascade and contain one to three modules of a common 70-amino-acid motif called the BIR domain. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel beta-sheet and four alpha-helices and resembles a classical zinc finger. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.  相似文献   

18.
Short alanine peptides, containing 16 or 17 residues, appear to form alpha-helices in aqueous solution. But the main spectroscopic analyses used on helical peptides (circular dichroism and nuclear magnetic resonance) cannot distinguish between an alpha-helix (in which the ith residue is hydrogen-bonded to residue i + 4; ref. 9) and the next most common peptide helix, the 3(10)-helix10 (i-->i + 3 hydrogen-bonding). To address this problem we have designed single and doubly spin-labelled analogues of alanine-based peptides in which the nitroxide spin label forms an unbranched side chain extending from the sulphur atom of a cysteine residue. Here we report the circular dichroism, Fourier-transform infrared and electron-spin resonance spectra of these peptides under helix-forming conditions. The infrared absorbance gives an amide I' band with a frequency that is substantially different from that observed for alpha-helices. The electron-spin resonance spectra of doubly labelled helices show that the ranking of distances between side chains, around a single turn (residues 4-8), is inconsistent with an alpha-helical structure. Our experiments suggest that the more likely peptide geometry is a 3(10)-helix.  相似文献   

19.
The crystal structure of diphtheria toxin.   总被引:66,自引:0,他引:66  
The crystal structure of the diphtheria toxin dimer at 2.5 A resolution reveals a Y-shaped molecule of three domains. The catalytic domain, called fragment A, is of the alpha + beta type. Fragment B actually consists of two domains. The transmembrane domain consists of nine alpha-helices, two pairs of which are unusually apolar and may participate in pH-triggered membrane insertion and translocation. The receptor-binding domain is a flattened beta-barrel with a jelly-roll-like topology. Three distinct functions of the toxin, each carried out by a separate structural domain, can be useful in designing chimaeric proteins, such as immunotoxins, in which the receptor-binding domain is substituted with antibodies to target other cell types.  相似文献   

20.
Murakami M  Kouyama T 《Nature》2008,453(7193):363-367
Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a G(q)-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cbeta. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical member. Here we report the crystal structure of squid (Todarodes pacificus) rhodopsin at 2.5 A resolution. Among seven transmembrane alpha-helices, helices V and VI extend into the cytoplasmic medium and, together with two cytoplasmic helices, they form a rigid protrusion from the membrane surface. This peculiar structure, which is not seen in bovine rhodopsin, seems to be crucial for the recognition of G(q)-type G proteins. The retinal Schiff base forms a hydrogen bond to Asn 87 or Tyr 111; it is far from the putative counterion Glu 180. In the crystal, a tight association is formed between the amino-terminal polypeptides of neighbouring monomers; this intermembrane dimerization may be responsible for the organization of hexagonally packed microvillar membranes in the photoreceptor rhabdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号