首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)1Ak-1f(k-1)+…+A1f'+Af=0(k≥2)解的增长性,其中Aj(1≤j≤K-1),A为亚纯函数,假设A是以∞为亏值的超越亚纯函数,通过给定Aj(1≤j≤k-1)的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级.  相似文献   

2.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)+Ak-1f(k-1)+…+A1f’+A0f=0(k≥2)解的增长性,其中Aj(j=0,1,…,k-1)是亚纯函数,通过给定Aj的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级.  相似文献   

3.
利用亚纯函数值分布理论,该文研究了一类高阶线性微分方程亚纯解的增长性,得到当方程系数满足某些条件时,其任意非平凡解为无穷级。推广了龙见仁等人的结果。  相似文献   

4.
应用值分布的方法研究了两类高阶亚纯函数系数微分方程的超越亚纯解的增长率,将整系数方程解的超级的相关结果推广到亚纯系数情况,得到其解的超级的2个估计.  相似文献   

5.
假设Aj(z)=Bj(z)ePj(z)(j=0,1,,k-1),Aj不全恒等于零,其中Bj(z)是亚纯函数,Pj(z)=aj,mjzmj++aj,0为非常数多项式,aj,q(q=0,1,,mj)为复常数,aj,mj0,并且满足(Bj)<degPj以及当ij时,deg(Pi-Pj)=max{mi,mj}(A0).且满足当mj=(A0)且argaj,mj=arga0,m0时,|aj,mj|<|a0,m0|.那么齐次线性微分方程f(k)+Ak-1f(k-1)++A0f=0的任一非零亚纯解f都满足(f)=.特别地,如果f(z)的极点重数一致有界,那么2(f)rn=(A0).  相似文献   

6.
研究了高阶微分方程$f^{(k)}+A_{k-1}f^{(k-1)}+cdots+A_1f^{'}+A_0f=0$ 亚纯解的增长性.假设$bneq 0$是复常数,定义指标集$mathnormal{Lambda}={a|a=c_{a}b,-1  相似文献   

7.
利用亚纯函数值分布理论,研究两类二阶线性微分方程解的增长性,得到当方程系数满足某些条件时,其任意非平凡解为无穷级。  相似文献   

8.
研究一类K阶亚纯系数齐次线性微分方程亚纯解的增长性,得到了这些解的超级的估计.  相似文献   

9.
研究了一类高阶亚纯函数系数线性微分方程的亚纯解的增长性,.当存在某个系数对方程的解起关键作用时,并且对方程中某个系数的零点和极点限制在某个角域内时,我们得到了方程的亚纯解增长性的精确估计.  相似文献   

10.
主要研究了高阶线性微分方程f(k) Ak-1f(k-1) … A0f=F的亚纯解的零点问题.如果A0(z),A1(z),…,Ak-1(z),F(z)≠0为亚纯函数,且当A0(z)比其它Aj(z)(j≠0)有较快增长级时,得到了该微分方程亚纯解的零点收敛指数的精确估计式.  相似文献   

11.
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。  相似文献   

12.
该文提出了一类新型的亚纯函数系数的二阶线性微分方程,研究了其亚纯解及其一阶和二阶导数l的不动点及超级问题,得到了有关复域微分方程亚纯解及其一阶和二阶导数的不动点性质.  相似文献   

13.
讨论齐次线性微分方程f(k)+Ak-1f(k-1)+…+A0f=0,k≥2的解的增长级,其中方程的系数为至多有限多个极点的亚纯函数,且不存在某个系数的级大于其他系数的级.在一定条件下,得到了方程解的增长级的精确估计.  相似文献   

14.
改进了仪洪勋、林伟川等人关于整函数唯一性的定理,得到了关于具有Borel例外值并且级为有穷非整数的非常数亚纯函数的唯一性的结论.设f(z)、g(z)为非常数亚纯函数,g(z)的级λ(g)为有穷非整数,0和∞是f(z)与g(z)的CM分担值,f(z)为正规增长函数,且∞为f(z)的Borel例外值,若存在两个非零有穷判别的复数a1、a2,满足 - E1)(aj,f)(∩)-E1)(aj,g)(j=1,2)且max{(1)(0,f),δ(a1,f),δ(a2,f)}>0,或者满足-Ekj)(aj,f)(∩) -Ej)(aj,g)(j=1,2),其中k1≥1,k2≥2,则f(z)≡g(z).  相似文献   

15.
研究了两类整函数系数的K阶线性微分方程解的增长性,得到其超级的一些估计,所得结果改进了一些相关结果。  相似文献   

16.
定理设f(z)是下级μ有穷的亚纯函数,P_i是f~((i))(z)的非零有穷亏值数,而f~((0))(z)=f(z);当i为负整数时,f~((i))(z)为f(z)的(i)次原函数(若存在的话)。若对某一正整数k, sum from n=a to δ(a,f~((k)))=2,和 sum from i=-∞ to ∞ P_i=μ。则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值。  相似文献   

17.
分担两个值的亚纯函数   总被引:3,自引:0,他引:3  
该文主要证明如下的定理1  设f 和g 为非常数亚纯函数,a1 , …,an 为互异复数,若(i) f 和g CM 分担a1 ,a1 ,(ii) δ( ∞,f)= δ( ∞,g) =1 ,(iii) a3 ,…,an 为f 的亏值,满足nj=3δ(aj ,f) > n - 2n ,则(a) 当n = 3 时,有f ≡g 或(f - a3)(g + a3 - a1 - a2) ≡(a3 - a1)(a2 - a3)且有δ( a3 , f) = 1, δ(a1 + a2 - a3 , g) = 1,(b) 当n > 3 时,有f ≡g 。  相似文献   

18.
定理设f(z)是下级μ有穷的亚纯函数,P_4是f~(i)(z)的非零有穷亏值数,而f~(0)(z)=f(z);当i为负整数时,f~(i)(z)为f(z)的(i)次原函数(若存在的话).若对某一正整数k, ??和?? 则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号