共查询到17条相似文献,搜索用时 78 毫秒
1.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)1Ak-1f(k-1)+…+A1f'+Af=0(k≥2)解的增长性,其中Aj(1≤j≤K-1),A为亚纯函数,假设A是以∞为亏值的超越亚纯函数,通过给定Aj(1≤j≤k-1)的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级. 相似文献
2.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)+Ak-1f(k-1)+…+A1f’+A0f=0(k≥2)解的增长性,其中Aj(j=0,1,…,k-1)是亚纯函数,通过给定Aj的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级. 相似文献
3.
利用亚纯函数值分布理论,该文研究了一类高阶线性微分方程亚纯解的增长性,得到当方程系数满足某些条件时,其任意非平凡解为无穷级。推广了龙见仁等人的结果。 相似文献
4.
研究了高阶微分方程$f^{(k)}+A_{k-1}f^{(k-1)}+\cdots+A_1f^{'}+A_0f=0$ 亚纯解的增长性.假设$b\neq 0$是复常数,定义指标集$\mathnormal{\Lambda}=\{a|a=c_{a}b,-1 相似文献
5.
应用值分布的方法研究了两类高阶亚纯函数系数微分方程的超越亚纯解的增长率,将整系数方程解的超级的相关结果推广到亚纯系数情况,得到其解的超级的2个估计. 相似文献
6.
假设Aj(z)=Bj(z)ePj(z)(j=0,1,,k-1),Aj不全恒等于零,其中Bj(z)是亚纯函数,Pj(z)=aj,mjzmj++aj,0为非常数多项式,aj,q(q=0,1,,mj)为复常数,aj,mj0,并且满足(Bj)<degPj以及当ij时,deg(Pi-Pj)=max{mi,mj}(A0).且满足当mj=(A0)且argaj,mj=arga0,m0时,|aj,mj|<|a0,m0|.那么齐次线性微分方程f(k)+Ak-1f(k-1)++A0f=0的任一非零亚纯解f都满足(f)=.特别地,如果f(z)的极点重数一致有界,那么2(f)\r\n=(A0). 相似文献
7.
利用亚纯函数值分布理论,研究两类二阶线性微分方程解的增长性,得到当方程系数满足某些条件时,其任意非平凡解为无穷级。 相似文献
8.
研究了一类高阶亚纯函数系数线性微分方程的亚纯解的增长性,.当存在某个系数对方程的解起关键作用时,并且对方程中某个系数的零点和极点限制在某个角域内时,我们得到了方程的亚纯解增长性的精确估计. 相似文献
9.
利用 Nevanlinna 的基本理论和方法,研究了齐次线性微分方程() f k+A f k k??11++=及非齐次Af 0线性微分方程解的增长性.在假设存在某个(1 A s s k ?≤≤1)具有有限亏值的有限级整函数的情况下,证明了齐次线性微分方程的任一非零解均为无穷级,非齐次方程除1个例外解外,其它的非零解也均为无穷级 相似文献
10.
刘慧芳 《江西师范大学学报(自然科学版)》2006,30(2):173-175
主要研究了高阶线性微分方程f(k) Ak-1f(k-1) … A0f=F的亚纯解的零点问题.如果A0(z),A1(z),…,Ak-1(z),F(z)≠0为亚纯函数,且当A0(z)比其它Aj(z)(j≠0)有较快增长级时,得到了该微分方程亚纯解的零点收敛指数的精确估计式. 相似文献
11.
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。 相似文献
12.
该文提出了一类新型的亚纯函数系数的二阶线性微分方程,研究了其亚纯解及其一阶和二阶导数l的不动点及超级问题,得到了有关复域微分方程亚纯解及其一阶和二阶导数的不动点性质. 相似文献
13.
陈宗煊 《江西师范大学学报(自然科学版)》1998,22(4):291-294
该文研究了二阶齐次线性微分方程f″+Ae^pf’+Be^Qf=0的解的增长性,其中P,Q为次数不同的多项式,A,B为级分别小于e^p,e^Q的级的整函数,对于方程的大部分解,我们得到了这些解的增长率的精确估计。 相似文献
14.
高阶亚纯系数非齐次线性微分方程亚纯解的零点收敛指数与增长级 总被引:1,自引:2,他引:1
易才凤 《江西师范大学学报(自然科学版)》1998,22(3):212-216
该文研究了非齐次线性微分方程f(k)+Ak-1f(k-1)+…+A1f′+A0f=F解的复振荡问题,其中A0,A1,…,Ak-1,F0是亚纯函数.在假设了A0有正规增长级,且A0比Aj(j≠0)有较大增长级的条件下,得到了该微分方程最多除去一个例外解f0外,其余所有亚纯解f都满足:λ(f)=λ(f)=σ(f)=∞. 相似文献
15.
研究高阶微分方程f^(k) (A1e^az D1)f’ (A0e^bz D0)f=0的解的增长性,其中Ai,Di(j=0,1)或为整函数,或为亚纯函数,且其级都小于1,推广了已有的结果。 相似文献
16.
研究了几类具有迭代级亚纯函数系数的高阶线性微分方程亚纯解的增长性和零点分布问题,当系数a0或ad对其它系数起支配作用时,得到了方程满足一定条件的亚纯解的迭代级的一些结果,所得结果推广了前人已有结果. 相似文献
17.
研究了线性微分方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f′+A0(z)f=H(z)解的增长性问题,其中Aj(j=0,1,…,k-1)和H(z)为有穷级整函数,并且某一Aj的最大模满足一定条件. 相似文献