首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y Sugase  S Yamane  S Ueno  K Kawano 《Nature》1999,400(6747):869-873
When we see a person's face, we can easily recognize their species, individual identity and emotional state. How does the brain represent such complex information? A substantial number of neurons in the macaque temporal cortex respond to faces. However, the neuronal mechanisms underlying the processing of complex information are not yet clear. Here we recorded the activity of single neurons in the temporal cortex of macaque monkeys while presenting visual stimuli consisting of geometric shapes, and monkey and human faces with various expressions. Information theory was used to investigate how well the neuronal responses could categorize the stimuli. We found that single neurons conveyed two different scales of facial information in their firing patterns, starting at different latencies. Global information, categorizing stimuli as monkey faces, human faces or shapes, was conveyed in the earliest part of the responses. Fine information about identity or expression was conveyed later, beginning on average 51 ms after global information. We speculate that global information could be used as a 'header' to prepare destination areas for receiving more detailed information.  相似文献   

2.
Plasticity in the visual cortex   总被引:2,自引:0,他引:2  
A M Sillito 《Nature》1983,303(5917):477-478
  相似文献   

3.
Eye dominance in the visual cortex   总被引:2,自引:0,他引:2  
C Blakemore  J D Pettigrew 《Nature》1970,225(5231):426-429
  相似文献   

4.
5.
L C Katz  A Burkhalter  W J Dreyer 《Nature》1984,310(5977):498-500
The use of retrograde axonal transport of various substances (for example, enzymes, lectins, synthetic fluorescent compounds) has yielded much information on the organization of neuronal pathways. Each type of retrograde tracer has its own set of attributes which define the scope of problems it can address. We describe here a new class of retrograde tracer, rhodamine-labelled fluorescent latex microspheres (0.02-0.2 micron diameter), which have distinct advantages over other available tracers for in vivo and in vitro applications. When injected into brain tissue, these microspheres show little diffusion and consequently produce small, sharply defined injection sites. Once transported back to neuronal somata, the label persists for at least 10 weeks in vivo and 1 yr after fixation. Microspheres have no obvious cytotoxicity or phototoxicity as assessed by intracellular recording and staining of retrogradely labelled cells in a cortical brain slice preparation. This approach was further used to visualize and compare, in cat visual cortex slices, neurones with different projection patterns, and revealed significant differences in patterns of intrinsic axons and dendrites. These properties of microspheres open new avenues for anatomical and physiological studies of identified projection neurones in slices as well as in dissociated cell cultures.  相似文献   

6.
7.
8.
9.
Inhibitory threshold for critical-period activation in primary visual cortex   总被引:18,自引:0,他引:18  
Fagiolini M  Hensch TK 《Nature》2000,404(6774):183-186
Neuronal circuits across several systems display remarkable plasticity to sensory input during postnatal development. Experience-dependent refinements are often restricted to well-defined critical periods in early life, but how these are established remains mostly unknown. A representative example is the loss of responsiveness in neocortex to an eye deprived of vision. Here we show that the potential for plasticity is retained throughout life until an inhibitory threshold is attained. In mice of all ages lacking an isoform of GABA (gamma-aminobutyric acid) synthetic enzyme (GAD65), as well as in immature wild-type animals before the onset of their natural critical period, benzodiazepines selectively reduced a prolonged discharge phenotype to unmask plasticity. Enhancing GABA-mediated transmission early in life rendered mutant animals insensitive to monocular deprivation as adults, similar to normal wild-type mice. Short-term presynaptic dynamics reflected a synaptic reorganization in GAD65 knockout mice after chronic diazepam treatment. A threshold level of inhibition within the visual cortex may thus trigger, once in life, an experience-dependent critical period for circuit consolidation, which may otherwise lie dormant.  相似文献   

10.
R W Baughman  C D Gilbert 《Nature》1980,287(5785):848-850
Earlier work has suggested that aspartate, glutamate and gamma-aminobutyric acid (GABA) act as transmitters in the cerebral cortex. There is reasonable evidence for the identity of the cell population responsible for GABA release but until now there has been little evidence concerning the sources for release of aspartate and glutamate. Here we have used two approaches to identify possible neurotransmitters used by cells in the visual cortex: measurement of the efflux of endogenous compounds in conditions of synaptic release and localization of these compounds to particular cell classes using neurotransmitter-specific histochemical techniques. Our results suggest that the acidic amino acids aspartate and glutamate may be cortical neurotransmitters, as shown by calcium-dependent release from endogenous stores and by uptake specific to pyramidal cells in layer 6 of the cortex. These substances may therefore have a role in the function of layer 6 cells, which are responsible for the recurrent projection from the cortex to the lateral geniculate nucleus and for the projection within the cortex from layer 6 to layer 4.  相似文献   

11.
12.
G C DeAngelis  I Ohzawa  R D Freeman 《Nature》1991,352(6331):156-159
Binocular neurons in the visual cortex are thought to perform the first stage of processing for the fine stereoscopic depth discrimination exhibited by animals with frontally located eyes. Because lateral separation of the eyes gives a slightly different view to each eye, there are small variations in position (disparities), mainly along the horizontal dimension, between corresponding features in the two retinal images. The visual system uses these disparities to gauge depth. We studied neurons in the cat's visual cortex to determine whether the visual system uses the anisotropy in the range of horizontal and vertical disparities. We report here that there is a corresponding anisotropy in the cortical representation of binocular information: receptive-field profiles for left and right eyes are matched for cells that are tuned to horizontal orientations of image contours. For neurons tuned to vertical orientations, left and right receptive fields are predominantly dissimilar. Therefore, a major modification is required of the conventional notion of disparity processing. The modified scheme allows a unified encoding of monocular form and binocular disparity information.  相似文献   

13.
Foci of orientation plasticity in visual cortex   总被引:5,自引:0,他引:5  
Dragoi V  Rivadulla C  Sur M 《Nature》2001,411(6833):80-86
Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains that converge at singularities or pinwheel centres. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1.  相似文献   

14.
Cumming BG 《Nature》2002,418(6898):633-636
The horizontal separation of the eyes means that objects nearer or farther than the fixation point project to different locations on the two retinae, differing principally in their horizontal coordinates (horizontal binocular disparity). Disparity-selective neurons have generally been studied with disparities applied in only one direction (often horizontal), which cannot determine whether the encoding is specialized for processing disparities along the horizontal axis. It is therefore unclear if disparity selectivity represents a specialization for naturally occurring disparities. I used random dot stereograms to study disparity-selective neurons from the primary visual cortex (V1) of awake fixating monkeys. Many combinations of vertical and horizontal disparity were used, characterizing the surface of responses as a function of two-dimensional disparity. Here I report that the response surface usually showed elongation along the horizontal disparity axis, despite the isotropic stimulus. Thus these neurons modulated their firing rate over a wider range of horizontal disparity than vertical disparity. This demonstrates that disparity-selective cells are specialized for processing horizontal disparity, and that existing models of disparity selectivity require substantial revision.  相似文献   

15.
This study researches the coding model adaptive for information processing of the bottom-up attention mechanism.We constructed a coding model satisfying the neurobiological constraints of the primary visual cortex.By quantitatively changing the coding constraints,we carried out experiments on images used in cognitive psychology and natural image sets to compare the effects on the saliency detection performance.The experimental results statistically demonstrated that the encoding of invariant features and representation of overcomplete bases is advantageous to the bottom-up attention mechanism.  相似文献   

16.
Graded persistent activity in entorhinal cortex neurons   总被引:30,自引:0,他引:30  
Egorov AV  Hamam BN  Fransén E  Hasselmo ME  Alonso AA 《Nature》2002,420(6912):173-178
Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex-which link the hippocampus to extensive cortical regions-respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.  相似文献   

17.
Columns for visual features of objects in monkey inferotemporal cortex.   总被引:21,自引:0,他引:21  
I Fujita  K Tanaka  M Ito  K Cheng 《Nature》1992,360(6402):343-346
At early stages of the mammalian visual cortex, neurons with similar stimulus selectivities are vertically arrayed through the thickness of the cortical sheet and clustered in patches or bands across the surface. This organization, referred to as a 'column', has been found with respect to one-dimensional stimulus parameters such as orientation of stimulus contours, eye dominance of visual inputs, and direction of stimulus motion. It is unclear, however, whether information with extremely high dimensions, such as visual shape, is organized in a similar columnar fashion or in a different manner in the brain. Here we report that the anterior inferotemporal area of the monkey cortex, the final station of the visual cortical stream crucial for object recognition, consists of columns, each containing cells responsive to similar visual features of objects.  相似文献   

18.
Changes in the visual cortex of rats after unilateral deprivation   总被引:1,自引:0,他引:1  
E Fifková 《Nature》1968,220(5165):379-381
  相似文献   

19.
McAlonan K  Cavanaugh J  Wurtz RH 《Nature》2008,456(7220):391-394
The massive visual input from the eye to the brain requires selective processing of some visual information at the expense of other information, a process referred to as visual attention. Increases in the responses of visual neurons with attention have been extensively studied along the visual processing streams in monkey cerebral cortex, from primary visual areas to parietal and frontal cortex. Here we show, by recording neurons in attending macaque monkeys (Macaca mulatta), that attention modulates visual signals before they even reach cortex by increasing responses of both magnocellular and parvocellular neurons in the first relay between retina and cortex, the lateral geniculate nucleus (LGN). At the same time, attention decreases neuronal responses in the adjacent thalamic reticular nucleus (TRN). Crick argued for such modulation of the LGN by observing that it is inhibited by the TRN, and suggested that "if the thalamus is the gateway to the cortex, the reticular complex might be described as the guardian of the gateway", a reciprocal relationship we now show to be more than just hypothesis. The reciprocal modulation in LGN and TRN appears only during the initial visual response, but the modulation of LGN reappears later in the response, suggesting separate early and late sources of attentional modulation in LGN.  相似文献   

20.
J Bolz  C D Gilbert 《Nature》1986,320(6060):362-365
To understand the mechanisms by which the receptive field properties of visual cortical cells are generated, one must consider both the thalamic input to the cortex and the intrinsic cortical connections. In the cat striate cortex, layer 4 is the main recipient of input from the lateral geniculate nucleus, yet the cells in that layer possess several receptive field properties that are distinct from the geniculate input, including orientation specificity, binocularity, directionality and end-inhibition, the last of which allows cells to respond to edges of a restricted length. These properties could be generated by connections within the layer, by its input from the claustrum or by the massive projection that layer 4 receives from layer 6. In the present study, we attempted to determine the functional role of the layer 6 to layer 4 projection by reversible inactivation of layer 6 using the inhibitory transmitter gamma-aminobutyric acid (GABA). After inactivating layer 6, cells in layer 4 lost end-inhibition. Cells in layer 2 + 3, which receive their principal input from layer 4, were similarly affected. The elimination of end-inhibition was specific, other receptive field properties, such as direction selectivity or orientation specificity, remaining intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号