首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设R为一环,ωR为Tor-自正交模.引入模的右Tor-正交维数(相对于ωR)这一概念,并且给出了一种计算模的这种相对右Tor-正交维数的准则.对一个交换、凝聚的半局部环R和一有限表示的Tor-自正交模R-模ω,将证明ω的平坦维数与R/J的右Tor-正交维数(相对于ωR)是相等的,其中J为环R的Jacobson根.作为上...  相似文献   

2.
设R是一个环,A是一个由左R-模构成的类.对于投射可解的预盖类A,利用维数转移的方法,通过A-维数和自正交模的性质得到了A-periodic左R-模M仍然在A中的充分条件.作为应用,在R的左Gorenstein整体维数有限的条件下刻画了R的左整体维数的有限性.此外,还在一定条件下得到了A⊥中的无限表现偏倾斜模的等价刻画...  相似文献   

3.
给出了ZP-内射维数以及ZP-平坦维数的定义,揭示了左ZP-内射维数l.zp.ID(R)=0及右ZP-平坦维数r.zp.FD(R)=0的环,即它们为非奇异环,并给出等价描述.讨论了环R的左ZP-内射维数l.zp.ID(R)≤n以及环R的右ZP-平坦维数r.zp.FD(R)≤n的等价刻画,证明了环R上的模类ZPI若满足单同态的上核封闭且l.zp.ID(R)< SymboleB@ ,则l.zp.ID(R)=r.zp.FD(R)=l.zp-id(RR),并证明ZP-内射左R-模的商模是ZP-内射模当且仅当模类ZPI满足单同态的上核封闭且l.zp.ID(R)≤1.  相似文献   

4.
一个环R叫做J-clean环,如果R中的每一个元素都可以写成a=e+j的形式,其中e是幂等元,j属于Jacobson根,文章探究了J-clean环的各种性质和Morita contexts,证明了环R是J-clean当且仅当R是clean环和R/J(R)是布尔环;环R是J-clean当且仅当R[[x_1,…,x_n]],R(M),R[[x]]和R∝M是J-clean,每个J-clean环R是右(左)quasi-duo环.更多的,当R:=(A M/N B)是一个Morita context,则R是J-clean环当且仅当A,B是J-clean环并且MN■J(A)和NM■J(B);当R是一个环且s∈C(R),则S=K_s(R)是J-clean当且仅当R是J-clean且s∈J(R);当R是一个环且s∈C(R),则M_n(R;s)是J-clean当且仅当R是J-clean和s∈J(R).  相似文献   

5.
关于n-表现维数   总被引:2,自引:1,他引:1  
利用n-表现模定义了模M与环R的n-表现维数FPnd(M)与FPnD(R),给出了FPnd(M),fd(M)及pd(M)之间的关系,刻画了右n-凝聚环,即R为右n-凝聚环当且仅当对于任意右R-模M,均有FPnd(M)=FPn+1d(M).在右n-凝聚环R上给出了rgD(R),wD(R),FPnD(R)之间的关系.  相似文献   

6.
研究了满足一定条件的P-内射环为WB-环的等价刻画.证明了如果R是非奇异的P-内射环,那么R只要满足条件之一:(a)R满足特殊左零化子的升链条件;(b)R不包含由有限非零主左理想构成的直和项;(c)R是CF环;(d)R是Goldie环.有如下等价:(1)R是WB-环;(2)对任何a∈R,有正交理想I,J,使得a=aua=ava,这里u∈R,模I右可逆,v∈R模J左可逆;(3)对任何a∈R,有正交理想I,J和幂等元e∈R,使得a=eu=ev,这里u∈R模I右可逆,v∈R模J左可逆;(4)如果ab,a,b∈R,则有正交理想I,J,使得au=ub,av=vb,其中u∈R模I右可逆,v∈R模J左可逆.  相似文献   

7.
设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有Tor_1~R(D,M)=0,则D称为强无挠模.强无挠模对Gorenstein环的研究发挥了重要的作用.为了对强无挠模作进一步刻画,首先证明(D_∞,F_∞)是Tor-挠理论当且仅当1.FFD(R)∞,其中,D_∞和F_∞分别表示强无挠右R-模类和平坦维数有限的左R-模类.还证明每一右R-模是强无挠模当且仅当1.FFD(R)=0.最后证明若1.FFD(R)∞,则1.FFD(R)=stf.dim(R),其中stf.dim(R)表示环R的(右)整体强无挠维数.  相似文献   

8.
设R是环,Q(R)是R上的四元数环,分别用J(R)与G(R)表示R的Jacobson根与Brown-Mceoy根,与表示R的左理想格与右理想格.本文证明了以下结果: Q(J(R))=J(Q(R)),Q(G(R))=G(Q(R)),Q,Q.  相似文献   

9.
主要证明了:(1)设 R是半完全的左morphic环,如果R又有本质右基座,那么R是Kasch环;(2)如果R是左非奇异的右morphic环,并且R是左有限维数环,那么R是半单环.  相似文献   

10.
本文利用左右完全对称的条件给出了单边自内射环是 PF—环的判别准则:一个右(左)自内射环 R 是一个右(左)PF—环当且亿当 R/J(R)是半单的且1r(J(R))=J(R)=rl(J(R)).  相似文献   

11.
Cohn 在[1]中给出了局部环上二维线性群的定义关系,即文中的(3.1)—(3.3)式.我们认为这三个等式也可作为半局部环及φ(?)满射环上的二维线性群的定义关系.我们用 R 表示半局部环,U 表单他元素集合,M_i(i=1,2,…,m)表其有限个极大理想,J(R)=(?)M_i,由[2]知 R/J(R)=multiply from i=1 to m R/M_i.如果 R 有无限个极大理想,multiply from tεT to R/M_i 表示 R/M_(?)的有序直积(T 是指标集),且有 R/J(R)(?)multiply from tεT R/M_t,则称 R 为φ—满射环.易见φ—满射环是半局部环形式上的推广.由于在证明我们的结  相似文献   

12.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

13.
本文首先证明环R上左(右)模的fp*-内射(fp-平坦)维数均可以用Ext(Tor)来刻划的充要条件为R是一类比左Coherent环弱的环——在FPQ环;其次证明在左FPQ环上,左fp*-内射整体维数等于右fp-平坦整体维数(定理2);最后,着重讨论有限维FPQ环的有趣性质(定理3)。例如R是1fp*iD(R)≤2的左FPQ环,当且仅当左fp*-内射模的正向极限是fp*-内射的(指标集可以不定向)(推论)。  相似文献   

14.
引入了模的强极大内射维数和环R的右整体强极大内射维数,并给出了这些维数的一些刻画.设n是非负整数,证明了若R是右广义Noetherian环且SMI-d(R)≤n,则(SMI≤n,(SMI≤n)⊥)是完备的余挠对,其中SMI≤n是强极大内射维数不超过n的模类.最后证明了(SMP,SMI)是余挠对,其中SMP是强极大投射模类,SMI是强极大内射模类.  相似文献   

15.
设R是一个环,如果U(R)=Uc(R)+J#(R),则称R是GUcJ环;如果对于任意a∈R,都存在g∈Uc(R),p2=p∈R,d∈J#(R)使得ag=p+d(且ap=pa),则称R是(强)J#-Uc-clean环。GUcJ环和J#-Uc-clean环分别是GUJ环和GJ-clean环的真推广。文章研究了GUcJ环的基本性质,证明了R是GUcJ环当且仅当R/J是UcU环且Uc(R/J)=(Uc(R)+J)/J,R是UcJ环当且仅当R是GUcJ环且R/J是reduced的。此外,给出了(强)J#-Uc-clean环的例子,得到了(强)J#  相似文献   

16.
设R是整环,其商域为K.dimv(R)表示R的赋值维数.证明了:(1)dimv(R)是R的维数互异的既是UMT整环,又是DW整环的扩环升链RmRm-1…R1R0=K的长度的上确界;(2)dimv(R/P)≤dimv(R)-htvP,其中P是R的素理想,htvP是P的赋值高度;(3)对于强Milnor方图RDTF,dimv(R)=max{htvM+dimv(D),dimv(T)},其中M是R与T的公共素理想.  相似文献   

17.
主要证明了:若R是J-环,R的每个单奇异左R-模是YJ-内射模或平坦模,且R的每个极大本质左(右)理想是GW-理想,则R/J(R)是强正则环.  相似文献   

18.
设R为环,给出R-模的fann-内射维数、fann-平坦维数概念,并在此基础上定义R的左整体fann-维数(记为I.fa.ID(R))和R的右整体fann-平坦维数(记为r.fa.FD(R)).若记所有fann-内射R-模构成的类为FAI,证明了若FAI满足单同态的上核是封闭的,则有I.fa.ID(R)=r.fa.FD(R),且此时I.fa.ID(R)≤1的充要条件是R的每个有限生成左零化子都是投射模.  相似文献   

19.
关于Morphic环的推广   总被引:2,自引:1,他引:2  
文中主要给出了YJ-morphic环的定义.说明了以下主要结果:每一个左YJ-morphic环是右YJ-内射环;每一个右YJ-morphic的Bear环是右YJ-pp环;若R是左YJ-morphic环,则J(R)=Z(RR),Soc(RR)(∈)Soc(RR).  相似文献   

20.
弱整体维数和正向(逆向)极限   总被引:1,自引:0,他引:1  
§1 引言(弱)整体维数是同调代数的主题之一,文[1]给出了整体维数的一些性质,本文首先证明这些性质对于弱整体维数也类似地成立(§2),作为§2的结束,我们给出半准素环弱整体维数的一个简单计算法。在§3中,主要讨论正(逆)向极限的平坦维数等与(弱)整体维数的关系(定理3.1),特别地,环 R 是弱整体维数≤2的左 Coherent 环当且仅当右平坦  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号