首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
用小波分析将曲面表面误差分离为三项之和:形状误差、表面波度和表面粗糙度,同时得出三种误差的分布及其特性,克服了传统统计参数法的某些不足,有利于对表面的分项及总体特征进行综合评定  相似文献   

12.
自由曲面造型中曲面信息的表示与分析   总被引:2,自引:0,他引:2  
简要地介绍了NURBS对于自由面的造型方法,并在此基础上研究了曲面上信息的输入处理、信息的分析,如曲率、法矢、挠率等的获取,最后对曲面的光顺性进行初步探讨。  相似文献   

13.
The recent progress in inner surface hardening of tubes by plasma processing is summerized. Several techniques of inner surface plasma source ion implantation and deposition are introduced, and their advantages and disadvantages are discussed. The basic principles, technical features and new progress of inner surface plasma source ion implantation methods for metal tubes, which were developed in our laboratory, are described in detail. And perspectives of the future technical development for inner surface ion implantation of tubes are presented.  相似文献   

14.
电磁场边值关系的讨论   总被引:1,自引:0,他引:1  
本文对电磁场边值关系进行了系统的分析和讨论。介质分界面上的自由面电荷和面电流分布导致电位移矢量的法向分量和磁场的切向分量不连续;类似的,面束缚电荷、面磁化电流导致了极化强度的法向分量和磁化强度的切向分量不连续,在恒定场情况下,电磁场的边值关系是相互独立的,而在时变场情况下,边值关系不完全独立,只需考虑电磁场的切向分量的边值关系。  相似文献   

15.
金属表面预处理对环氧树脂粘结剂粘结强度的影响   总被引:1,自引:0,他引:1  
利用拉伸剪切实验系统地研究了砂纸打磨、喷砂、酸洗和磷化四种表面处理方法对粘结剂粘结强度的影响,并结合扫描电镜(SEM)、表面粗糙度测试仪对金属表面形貌的研究,结合能谱测定拉剪试样破坏面的成分数据,详细分析了不同表面处理方法影响界面粘结强度的作用机理。结果表明,各种表面处理方法均可改变金属表面形态,从而有效提高界面粘结强度,为进一步提高粘结剂/金属界面结合强度打下一定的基础。  相似文献   

16.
液体表面有一些特殊的性质,目前对其微观本质尚无定量解释。本文首先分析了液体表面层中分子的受力情况,然后从微观的角度对液体表面的一些特性作了半定量的讨论,得出的结果在数量级上与实际相符。  相似文献   

17.
基于低频液体表面波的光衍射原理,提出了一种测量液体表面张力及界面张力的光学方法。系统地建立了测量理论,并给出了解析关系。实验上观察到高清晰的液体表面波衍射条纹,讨论了由衍射条纹测量液体特表面张力及界面张力的具体过程,给出了测量结果。本方法具有实时、非接触的特点。  相似文献   

18.
基于数字化共轭曲面理论的数字齿面共轭求解   总被引:4,自引:0,他引:4  
基于数字化共轭曲面理论和方法,根据啮合传动的规律,应用自行研制开发的共轭曲面求解软件Conjugater1.0.对直齿面和鼓形齿面的数字化共轭曲面求解分别进行了研究.可为各种齿轮的数字化啮合分析、模拟仿真以及数字加工技术提供理论和技术分析参考.  相似文献   

19.
介绍了在CNC系统上实现自由曲面加工运动轨迹直接插补控制的原理、方法与取得的成果,使CNC系统具有对工程曲面的直接加工和工艺参数的修改适应能力与高速高精加工性能,直接使用类APT的高级语言,大大简化零件程序信息和加工辅助工作,使曲面精加工经济而高效.  相似文献   

20.
基于接触角法计算固体表面张力的研究进展   总被引:4,自引:0,他引:4  
固体表面张力的测定始终是表面科学和工程领域中的热点问题。综述了Young方程推出以来基于接触角法计算固体表面张力的各种方法,分析了这些方法形成的假设条件及在计算固体表面张力时存在的问题,并介绍了该领域的最新研究成果,比较了不同方法计算固体表面张力的值的特点,最后指出当前研究尚存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号