共查询到18条相似文献,搜索用时 46 毫秒
1.
一种改进的最小二乘支持向量机算法 总被引:1,自引:0,他引:1
最小二乘支持向量机是标准支持向量机的一种扩展,它是支持向量机在二次损失函数下的一种形式.它用等式约束代替不等式约束,求解过程变为解一组等式方程,避免了求解耗时的二次规划问题,但同时也丧失了标准支持向量机的稀疏性,影响了二次学习的效率.针对上述问题,本文提出了一种改进的最小二乘支持向量机增量学习方法.改进的最小二乘支持向量机算法采用自适应剪枝方法对解进行稀疏,根据每次训练得到的分类器性能来设定剪枝阚值和样本增量的大小,如果得到的分类器性能好,剪枝阈值和样本增量就大,反之,剪枝阚值和样本增量就小,从而提高了最小二乘支持向量机训练效率,解决了稀疏性问题.最后,仿真实验表明该算法方案可行. 相似文献
2.
针对最小二乘支持向量机对训练样本内噪声比较敏感和其稀疏性差的问题,提出基于密度k-近邻向量的训练样本裁剪算法。对训练样本的各个样本类进行聚类,删除噪声数据,提高支持向量机的训练精度。通过计算出每个样本类的平均相似度和平均密度,得到样本的类相似度阈值;根据相似度阈值,将小于类相似度阈值的样本进行合并,减少训练样本总数。实验结果表明,该算法在保证训练精度的情况下,减少了支持向量数目。 相似文献
3.
通过计算机对人脸进行分析,从而确定身份的技术统称为人脸识别,其具体内容包括图像预处理、特征选择和提取、分类。首先介绍了支持向量机和最小二乘支持向量机的基本思想和数学模型,推导了最小二乘支持向量机的算法步骤,在对人脸图像进行预处理的基础上,采用奇异值分解扩展算法提取人脸特征,然后再采用上述算法对人脸图像进行分类。通过实验可知本文中的算法可以对人脸图像进行有效分类,对解决小样本分类问题是有效的、可行的。 相似文献
4.
下水道可燃气体分析是城市下水道可燃气体监测预警系统的重要组成部分.该文针对BP神经网络对下水道可燃混合气体分析存在速度慢、容易陷入局部最优,以及标准最小二乘支持向量机鲁棒性差的缺点,建立了一种基于加权最小二乘支持向量机(WLS-SVM)的下水道可燃气体分析模型.加权最小二乘支持向量机模型采用最小二乘线性系统,对误差变量进行权值设定,提高了学习速度和学习精度.仿真结果表明:基于WLS-SVM的下水道可燃气体分析模型优于所比较的BP神经网络和最小二乘支持向量回归机2种模型,具有优良的预测精度和鲁棒性. 相似文献
5.
针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学参数变化敏感,从而能比较快速而精确地实现动力学系统的非线性动态建模.数值仿真和桁架结构建模试验结果表明,该方法能较好地模拟结构的非线性特性,适用于动力学系统的非线性动态建模. 相似文献
6.
针对最小二乘支持向量机在利用产生于工业现场的非理想数据集进行建模预测时,稀疏化模型鲁棒性差的问题,提出了一种基于模糊C均值聚类和密度加权的稀疏化方法.首先通过模糊C均值聚类将训练样本划分为若干个子类;然后计算每个子类中各样本的可能贡献度,依次从每个子类中选取具有最大可能贡献度的样本作为支持向量;最后更新每个样本的可能贡献度,继续从各个子集中增选支持向量,直至稀疏化后的模型性能满足要求.仿真结果和磨机负荷实际应用表明,该方法能够兼顾模型在整体样本集和各工况子集上的性能,在实现模型稀疏化的同时,能够显著改善最小二乘支持向量机模型的鲁棒性. 相似文献
7.
为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个建模样本不同的权值,以克服异常样本点对模型性能的影响。建模过程中采用粒子群优化(PSO)算法对模型参数进行优化,以进一步提高模型预测精度。基于DeST模拟数据将AWLS-SVM方法应用于南方地区某办公建筑的逐时空调负荷预测中,并与径向基神经网络(RBFNN)模型、LS-SVM模型及WLS-SVM模型作比较,其平均预测绝对误差分别降低了51.84%、13.95%和3.24%,并进一步基于实际空调负荷数据将该方法应用于另一办公建筑的逐日空调负荷预测中。预测结果表明:AWLS-SVM预测的累积负荷误差为4.56MW,亦优于其他3类模型,证明了AWLS-SVM具有较高的预测精度和较好的泛化能力,是建筑空调负荷预测的一种有效方法。 相似文献
8.
最小二乘孪生支持向量机是一种有效的模式分类算法,然而每一个训练样本都对最终的决策平面有影响。如果训练集含有噪声或异常点,其会过度关注这些点,这可能导致最小二乘孪生支持向量机的判别能力较差。为了解决这个问题,受Fisher准则思想的启发,本文引入了双Fisher正则化项,并在此基础上提出了Fisher正则化的最小二乘孪生支持向量机。同时,在人工数据集和UCI数据集上验证了所提算法的有效性。 相似文献
9.
最小二乘支持向量机在人脸识别中的应用 总被引:4,自引:0,他引:4
支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合. 相似文献
10.
利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性. 相似文献
11.
针对最小二乘支持向量机(LS-SVM)在进行回归预测时存在的稀疏性缺陷问题,采用固定尺度最小二乘支持向量机,即固定支持向量数量进行改进。仿真结果表明:固定尺度最小二乘支持向量机在训练各种样本数据集时,有效地避开了LS-SVM中的稀疏性问题,且训练速度快,同时具有良好的预测精度。 相似文献
12.
基于鲁棒最小二乘支持向量机的聚丙烯熔融指数预报 总被引:2,自引:0,他引:2
可靠地预报熔融指数在聚丙烯生产过程中至关重要。在最小二乘支持向量机采用的误差平方和惩罚函数可能会导致不稳健的预报值基础上,进一步提出了基于鲁棒最小二乘支持向量机的聚丙烯熔融指数软测量模型。工业实例研究表明该方法拟合精度高、泛化能力强,具有广阔的应用前景。 相似文献
13.
为了改善传统方法设计滤波器的幅频响应性能,提出了基于最小二乘支持向量机的滤波器设计方法.优化选择最小二乘支持向量机参数,以理想滤波器的幅度响应作为学习样本,通过最小二乘支持向量机训练,使得实际滤波器的幅度响应逼近理想滤波器的幅度响应.仿真结果表明,由该方法设计的一维和二维滤波器性能接近于理想滤波器. 相似文献
14.
从最小二乘支持向量机的稀疏表达出发,构建高效的基于稀疏最小二乘支持向量机的网络入侵检测模型,提出了一种通过基于核空间近似策略的有效低秩逼近来有效减小原始训练样本集中的支持向量数来实现最终模型的稀疏表达.以MIT KDD99数据集为基础,对所提出方法进行有效性验证,并与利用剪枝策略通过递归过程中不断减少模型中支持向量个数的稀疏化方法、基本最小二乘支持向量机以及标准支持向量机方法的性能进行对比.结果表明:基于核空间近似的最小二乘支持向量机稀疏化与标准最小二乘支持向量机相当;此外稀疏最小二乘支持向量机能够提高入侵检测响应速度. 相似文献
15.
何萌 《空军工程大学学报(自然科学版)》2008,9(1):22-25
无人机费用预测是在装备研制设计阶段就必须考虑的重要问题。针对无人机费用预测小样本、具有不确定性等特点,提出了基于最小二乘支持向量机(LS-SVM,Least Squares Support Vector Machines)的无人机费用预测模型,并应用于研制费用、维修保障费用预测。应用结果表明,LS-SVM具有较高的费用预测精度。 相似文献
16.
针对网络控制系统实时信号的传输问题,提出一种采用最小二乘支持向量机理论预测和补偿非理想条件下网络传输导致的不良影响,建立一个较通用网络控制系统模型的方法,并对所提出模型的正确性和可应用性进行验证.仿真结果表明,基于最小二乘支持向量机预测模型能在一定程度上提高网络控制系统的动态性和稳定性,弥补了周期性传输采样信号占用大量网络带宽和不必要网络通信的缺陷. 相似文献
17.