首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang Y  Lu H  Bargmann CI 《Nature》2005,438(7065):179-184
  相似文献   

2.
Coates JC  de Bono M 《Nature》2002,419(6910):925-929
Wild isolates of Caenorhabditis elegans can feed either alone or in groups. This natural variation in behaviour is associated with a single residue difference in NPR-1, a predicted G-protein-coupled neuropeptide receptor related to Neuropeptide Y receptors. Here we show that the NPR-1 isoform associated with solitary feeding acts in neurons exposed to the body fluid to inhibit social feeding. Furthermore, suppressing the activity of these neurons, called AQR, PQR and URX, using an activated K(+) channel, inhibits social feeding. NPR-1 activity in AQR, PQR and URX neurons seems to suppress social feeding by antagonizing signalling through a cyclic GMP-gated ion channel encoded by tax-2 and tax-4. We show that mutations in tax-2 or tax-4 disrupt social feeding, and that tax-4 is required in several neurons for social feeding, including one or more of AQR, PQR and URX. The AQR, PQR and URX neurons are unusual in C. elegans because they are directly exposed to the pseudocoelomic body fluid. Our data suggest a model in which these neurons integrate antagonistic signals to control the choice between social and solitary feeding behaviour.  相似文献   

3.
Petrascheck M  Ye X  Buck LB 《Nature》2007,450(7169):553-556
The mechanisms that determine the lifespan of an organism are still largely a mystery. One goal of ageing research is to find drugs that would increase lifespan and vitality when given to an adult animal. To this end, we tested 88,000 chemicals for the ability to extend the lifespan of adult Caenorhabditis elegans nematodes. Here we report that a drug used as an antidepressant in humans increases C. elegans lifespan. In humans, this drug blocks neural signalling by the neurotransmitter serotonin. In C. elegans, the effect of the drug on lifespan is reduced or eradicated by mutations that affect serotonin synthesis, serotonin re-uptake at synapses, or either of two G-protein-coupled receptors: one that recognizes serotonin and the other that detects another neurotransmitter, octopamine. In vitro studies show that the drug acts as an antagonist at both receptors. Testing of the drug on dietary-restricted animals or animals with mutations that affect lifespan indicates that its effect on lifespan involves mechanisms associated with lifespan extension by dietary restriction. These studies indicate that lifespan can be extended by blocking certain types of neurotransmission implicated in food sensing in the adult animal, possibly leading to a state of perceived, although not real, starvation.  相似文献   

4.
Raizen DM  Zimmerman JE  Maycock MH  Ta UD  You YJ  Sundaram MV  Pack AI 《Nature》2008,451(7178):569-572
There are fundamental similarities between sleep in mammals and quiescence in the arthropod Drosophila melanogaster, suggesting that sleep-like states are evolutionarily ancient. The nematode Caenorhabditis elegans also has a quiescent behavioural state during a period called lethargus, which occurs before each of the four moults. Like sleep, lethargus maintains a constant temporal relationship with the expression of the C. elegans Period homologue LIN-42 (ref. 5). Here we show that quiescence associated with lethargus has the additional sleep-like properties of reversibility, reduced responsiveness and homeostasis. We identify the cGMP-dependent protein kinase (PKG) gene egl-4 as a regulator of sleep-like behaviour, and show that egl-4 functions in sensory neurons to promote the C. elegans sleep-like state. Conserved effects on sleep-like behaviour of homologous genes in C. elegans and Drosophila suggest a common genetic regulation of sleep-like states in arthropods and nematodes. Our results indicate that C. elegans is a suitable model system for the study of sleep regulation. The association of this C. elegans sleep-like state with developmental changes that occur with larval moults suggests that sleep may have evolved to allow for developmental changes.  相似文献   

5.
Hirotsu T  Saeki S  Yamamoto M  Iino Y 《Nature》2000,404(6775):289-293
The Ras-MAPK (mitogen-activated protein kinase) signal transduction pathway is well known to control cellular proliferation and differentiation in response to extracellular signals, but its other functions are less understood. In Caenorhabditis elegans this pathway regulates several developmental events, such as vulval induction and progression of meiosis, but its function in the nervous system is unknown. Here we report that the Ras-MAPK pathway is involved in olfaction in this organism. Mutational inactivation and hyperactivation of this pathway impairs efficiency of chemotaxis to a set of odorants. Experiments in which let-60 ras was expressed using a heat-shock promoter and a cell-specific promoter show that a normal activity of LET-60 Ras is required in mature olfactory neurons. Application of the odorant isoamylalcohol to wild-type animals leads to the activation of MAP kinase in olfactory neurons within 10 seconds. This induction is dependent on the function of the nucleotide-gated channel TAX-2/TAX-4 and the voltage-activated calcium channel subunit UNC-2. These results suggest a dynamic regulatory role for the Ras-MAPK pathway in perception and transmission of sensory signals in olfactory neurons.  相似文献   

6.
7.
Suzuki H  Thiele TR  Faumont S  Ezcurra M  Lockery SR  Schafer WR 《Nature》2008,454(7200):114-117
Chemotaxis in Caenorhabditis elegans, like chemotaxis in bacteria, involves a random walk biased by the time derivative of attractant concentration, but how the derivative is computed is unknown. Laser ablations have shown that the strongest deficits in chemotaxis to salts are obtained when the ASE chemosensory neurons (ASEL and ASER) are ablated, indicating that this pair has a dominant role. Although these neurons are left-right homologues anatomically, they exhibit marked asymmetries in gene expression and ion preference. Here, using optical recordings of calcium concentration in ASE neurons in intact animals, we demonstrate an additional asymmetry: ASEL is an ON-cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, stimulated by decreases in NaCl concentration. Both responses are reliable yet transient, indicating that ASE neurons report changes in concentration rather than absolute levels. Recordings from synaptic and sensory transduction mutants show that the ON-OFF asymmetry is the result of intrinsic differences between ASE neurons. Unilateral activation experiments indicate that the asymmetry extends to the level of behavioural output: ASEL lengthens bouts of forward locomotion (runs) whereas ASER promotes direction changes (turns). Notably, the input and output asymmetries of ASE neurons are precisely those of a simple yet novel neuronal motif for computing the time derivative of chemosensory information, which is the fundamental computation of C. elegans chemotaxis. Evidence for ON and OFF cells in other chemosensory networks suggests that this motif may be common in animals that navigate by taste and smell.  相似文献   

8.
Centrioles are necessary for flagella and cilia formation, cytokinesis, cell-cycle control and centrosome organization/spindle assembly. They duplicate once per cell cycle, but the mechanisms underlying their duplication remain unclear. Here we show using electron tomography of staged C. elegans one-cell embryos that daughter centriole assembly begins with the formation and elongation of a central tube followed by the peripheral assembly of nine singlet microtubules. Tube formation and elongation is dependent on the SAS-5 and SAS-6 proteins, whereas the assembly of singlet microtubules onto the central tube depends on SAS-4. We further show that centriole assembly is triggered by an upstream signal mediated by SPD-2 and ZYG-1. These results define a structural pathway for the assembly of a daughter centriole and should have general relevance for future studies on centriole assembly in other organisms.  相似文献   

9.
A M Rose  D L Baillie 《Nature》1979,281(5732):599-600
In higher organisms the rate of recombination between genetic loci is presumably responsive to selective pressure. Recently, selective pressures and mutational events that influence recombination have been reviewed. Mutational sites and chromosomal rearrangements that enhance or suppress recombination frequency in specific regions are known, but general mechanisms that enhance recombination have not yet been discovered. We describe here the isolation and characterisation of a strain of the hermaphroditic nematode, Caenorhabditis elegans, that has a recombination frequency at least threefold higher than that found in the wild type. In this strain, rec-1, the number of reciprocal recombination events between linked loci is increased. This is true for all pairs of linked loci studies so far. The high recombination strain behaves as if it carries a classical recessive mutation, although a second mutation exists which can alter the recessive behaviour of rec-1.  相似文献   

10.
Regulation of lifespan by sensory perception in Caenorhabditis elegans   总被引:12,自引:0,他引:12  
Apfeld J  Kenyon C 《Nature》1999,402(6763):804-809
Caenorhabditis elegans senses environmental signals through ciliated sensory neurons located primarily in sensory organs in the head and tail. Cilia function as sensory receptors, and mutants with defective sensory cilia have impaired sensory perception. Cilia are membrane-bound microtubule-based structures and in C. elegans are only found at the dendritic endings of sensory neurons. Here we show that mutations that cause defects in sensory cilia or their support cells, or in sensory signal transduction, extend lifespan. Our findings imply that sensory perception regulates the lifespan of this animal, and suggest that in nature, its lifespan may be regulated by environmental cues.  相似文献   

11.
C Desai  G Garriga  S L McIntire  H R Horvitz 《Nature》1988,336(6200):638-646
Thirty-five genes define a pathway for the development of the hermaphrodite-specific neurons (HSNs) in Caenorhabditis elegans. Some of these genes affect only one HSN trait, demonstrating that HSN migration, axonal outgrowth and serotonin expression are mutually independent events in HSN development; others, some of which are regulatory, affect multiple HSN traits. Nearly all are pleiotropic, revealing that the genes specifying HSN development also function in the development of other cell types.  相似文献   

12.
13.
14.
Kim H  Rogers MJ  Richmond JE  McIntire SL 《Nature》2004,430(7002):891-896
Muscular dystrophies are among the most common human genetic diseases and are characterized by progressive muscle degeneration. Muscular dystrophies result from genetic defects in components of the dystrophin-glycoprotein complex (DGC), a multimeric complex found in the muscle cell plasma membrane. The DGC links the intracellular cytoskeleton to the extracellular matrix and is thought to be important for maintaining the mechanical integrity of muscles and organizing signalling molecules. The exact role of the DGC in the pathogenesis of disease has, however, remained uncertain. Mutations in Caenorhabditis elegans DGC genes lead to specific defects in coordinated movement and can also cause muscle degeneration. Here we show that mutations in the gene snf-6 result in phenotypes indistinguishable from those of the DGC mutants, and that snf-6 encodes a novel acetylcholine/choline transporter. SNF-6 mediates the uptake of acetylcholine at neuromuscular junctions during periods of increased synaptic activity. SNF-6 also interacts with the DGC, and mutations in DGC genes cause a loss of SNF-6 at neuromuscular junctions. Improper clearing of acetylcholine and prolonged excitation of muscles might contribute to the pathogenesis of muscular dystrophies.  相似文献   

15.
16.
Lateral inhibition during vulval induction in Caenorhabditis elegans   总被引:8,自引:0,他引:8  
P W Sternberg 《Nature》1988,335(6190):551-554
During Caenorhabditis elegans vulval induction the anchor cell of the gonad specifies a spatial pattern of three cell types among a set of six multipotent epidermal cells, the vulval precursor cells (VPCs). Previous studies suggested that the anchor cell produces a graded inductive signal which can directly stimulate VPCs away from a ground state (type 3) to become type 1 or type 2 depending on their distance from the anchor cell. Here, we investigate the interactions among VPCs in a mutant, lin-15, in which VPC fates are rendered partially independent of the inductive signal, and show that type 1 cells actively inhibit adjacent cells from also becoming type 1 cells. The fate of each VPC therefore depends on the combined action of two intercellular signals: a graded inductive signal from the anchor cell, and a lateral inhibitory signal from at least some of its neighbours. Pattern formation among the VPCs lin-15 mutant is analogous to the establishment of the pattern of neuroblasts and dermatoblasts during early insect neurogenesis, suggesting that the similarities in inferred molecular structure of the lin-12 and Notch gene products, which are involved in these two instances of pattern formation, might extend to similarities in function.  相似文献   

17.
B Goldstein 《Nature》1992,357(6375):255-257
Two types of developmental events can cause an embryonic cell to adopt a fate different from that of its neighbours: during a cell division particular contents may be segregated to only one daughter cell and cells may experience different external cues, commonly in the form of inductive cell interactions. Work on development in the nematode Caenorhabditis elegans suggests that most cell fates are specified without a need for cell interactions. In particular, the gut cell lineage of C. elegans has been used as a primary example of specification by differential segregation of determinants. Here I re-examine the role of induction in gut specification by isolating early blastomeres. In C. elegans, the gut derives from all the progeny of a single blastomere (E) of the eight-cell stage. When a gut precursor cell (EMS) is isolated during the first half of the four-cell stage, gut does not differentiate. Gut differentiation is rescued by recombining EMS with its posterior neighbour (P2), but not by recombining EMS with one or both of the other two cells of the four-cell stage. These results demonstrate that P2 induces EMS to form gut in C. elegans.  相似文献   

18.
19.
Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans   总被引:14,自引:0,他引:14  
Roy PJ  Stuart JM  Lund J  Kim SK 《Nature》2002,418(6901):975-979
Chromosomes are divided into domains of open chromatin, where genes have the potential to be expressed, and domains of closed chromatin, where genes are not expressed. Classic examples of open chromatin domains include 'puffs' on polytene chromosomes in Drosophila and extended loops from lampbrush chromosomes. If multiple genes were typically expressed together from a single open chromatin domain, the position of co-expressed genes along the chromosomes would appear clustered. To investigate whether co-expressed genes are clustered, we examined the chromosomal positions of the genes expressed in the muscle of Caenorhabditis elegans at the first larval stage. Here we show that co-expressed genes in C. elegans are clustered in groups of 2-5 along the chromosomes, suggesting that expression from a chromatin domain can extend over several genes. These observations reveal a higher-order organization of the structure of the genome, in which the order of the genes along the chromosome id correlated with their expression in specific tissues.  相似文献   

20.
Bloss TA  Witze ES  Rothman JH 《Nature》2003,424(6952):1066-1071
To ensure cell survival, it is essential that the ubiquitous pro-apoptotic machinery is kept quiescent. As death is irreversible, cells must continually integrate developmental information with regulatory inputs to control the switch between repressing and activating apoptosis. Inappropriate activation or suppression of apoptosis can lead to degenerative pathologies or tumorigenesis, respectively. Here we report that Caenorhabditis elegans inhibitor of cell death-1 (ICD-1) is necessary and sufficient to prevent apoptosis. Loss of ICD-1 leads to inappropriate apoptosis in developing and differentiated cells in various tissues. Although this apoptosis requires CED-4, it occurs independently of CED-3--the caspase essential for developmental apoptosis--showing that these core pro-apoptotic proteins have separable roles. Overexpressing ICD-1 inhibits the apoptosis of cells that are normally programmed to die. ICD-1 is the beta-subunit of the nascent polypeptide-associated complex (betaNAC) and contains a putative caspase-cleavage site and caspase recruitment domain. It localizes primarily to mitochondria, underscoring the role of mitochondria in coordinating apoptosis. Human betaNAC is a caspase substrate that is rapidly eliminated in dying cells, suggesting that ICD-1 apoptosis-suppressing activity may be inactivated by caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号