首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
提出了一种改进的基于教与学的优化算法(TLBO)求解旅行商(TSP)问题,阐述了TLBO算法的基本思想和求解步骤,给出了算法流程,针对算法在解决大规模问题时易陷入局部最优的缺陷,引入混沌搜索机制对其进行了改进.着重研究了改进后的TLBO算法求解TSP问题的求解结果和性能分析,通过benchmark实例进行了仿真实验,结果表明:与诸如遗传算法和粒子群优化算法等已有启发式算法相比,改进后的TLBO算法在求解TSP问题时性能更为优越,从而为TSP问题的求解找到了一条新途径.  相似文献   

2.
针对教与学优化算法(TLBO)在解决复杂优化问题时易陷入局部最优的缺点,提出了一种融合模拟退火的改进教与学优化算法(SAMTLBO).该算法首先对学员阶段做了改进,在保持TLBO算法简单易实现的基础上,利用模拟退火方法增强了TLBO算法摆脱局部最优的能力,最后用4种算法对8个无约束优化函数仿真.数值实验表明,该算法无论是在收敛速度还是在寻优精度上均优于基本TLBO算法、ETLBO算法和DMTLBO算法.  相似文献   

3.
果蝇优化算法(FOA)有易陷入局部最优和应用领域小的不足之处.通过修改味道浓度判定值,并将整个迭代寻优过程分为果蝇移动范围逐步增大和逐步减小两阶段,给出了一种改进的果蝇优化算法(IFOA).相对于FOA,IFOA扩大了应用领域,保证了果蝇群体的多样性,也使果蝇更易跳出局部最优.最后对于6个经典测试函数的仿真试验结果表明,IFOA具有更好的全局搜索能力,在收敛精度、收敛速度和收敛稳定性上均比FOA有较大提高.  相似文献   

4.
针对细菌觅食优化算法存在收敛速度慢、寻优精度低、易陷入局部最优等缺点,提出了一种改进的细菌觅食优化算法。改进原有固定步长的游动方式,引入自适应步长调整策略,提出了基于非线性递减的余弦自适应步长;改进细菌位置的更新方式,借鉴人工蜂群的方法,采用混合的更新方式;改进优胜劣汰的选择标准,保留最优个体,对复制后的父代个体引入杂交算子;改进迁徙方式,提出种群进化因子,防止进化停滞不前。将本文算法用于经典函数以及PID参数整定测试,仿真实验结果验证了该算法的有效性。  相似文献   

5.
一种改进的粒子群优化算法   总被引:2,自引:1,他引:2       下载免费PDF全文
提出了一种改进的PSO(粒子群优化)算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项,积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,在该算法中粒子行为是基于个体极值中心点和全局极值点确定的,这使得粒子能够获得更多的信息量来调整自身状态。用3个基准函数对新算法进行了实验,结果表明新算法优于已有的一些改进PSO算法。  相似文献   

6.
一种改进的粒子群优化算法   总被引:2,自引:0,他引:2  
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法.该算法将模拟退火算法的"上山性"引入粒子群算法中,同时为了增加种群的多样性,将交叉和变异算子也结合进去,形成了一种新的改进粒子群算法.比较了高斯变异和柯西变异这两种变异算子对改进算法的影响.改进算法对典型函数的优化计算结果表明,与基本粒子群算法相比,改进算法能够更加快速有效的收敛到全局最优解,而且采用柯西变异算子的改进算法的效果比采用高斯变异算子的效果要好.  相似文献   

7.
标准粒子群算法能够解决各类优化问题,得到了广泛的应用,也引起很多研究人员的关注.为了提高全局搜索能力,使其不易陷入局部最优,提出了一种新的优化策略.首先,采用了佳粒子的概念,每次更新时,对所有粒子进行排序;然后,在此基础上,对所有的粒子进行评估,衡量每个粒子是否可以保留;最后,删除那些不符合保留要求的粒子,同时生成相应数目的新的粒子,以保持种群的规模,从而提高种群的整体适应性能.实验数据表明,新算法提高了算法的性能,具有更好的全局性能.  相似文献   

8.
近端策略优化(proximal policy optimization, PPO)是从一个已知的分布附近来采样估计另一个分布,通过用新策略在老策略的附近学习来实现优化的,其中老策略作为新策略的近似分布。【目的】针对PPO算法在强化学习中学习效率及收敛性不够好的问题,提出一种改进的PPO算法。【方法】首先提出一种新损失函数来更新PPO算法中的网络参数,采用泛化优势估计(generalized dominance estimation, GAE)对优势函数进行描述;然后采用类似异步优势演员-评论家(asynchronous actor-critic, A3C)算法中的多线程策略来训练智能体;最后设计新的参数更新方式来实现对主副两种网络中的参数更新。【结果】本方法能够使智能体更快地完成学习训练,其训练过程中收敛性更好;由于多线程,其算法的训练速度会比常规的PPO算法至少快5倍。【结论】改进的PPO算法其性能更好,这为后续强化学习算法的研究提供了新思路。  相似文献   

9.
粒子群优化算法是一种基于仿生技术的启发式算法,针对粒子群优化算法存在易早熟现象,提出一种改进的粒子群优化算法.该算法给出了一种新的变异算子,该算子具有一定探索和开发能力,从而避免算法陷入局部最优.基于新变异算子给出一个新的粒子位置更新公式.根据系统稳定性理论,推出了算法的参数设置区域.最后,通过标准测试函数的性能测试,验证了改进粒子群优化算法收敛速度和求解精度.实验结果表明,该算法具有较好的收敛速度和求解精度.  相似文献   

10.
对于基于上下文的自适应可变长编码(CAVLC)解码方案,提出一种快速解码方法,基本原则:分析非结构化码表的相关性,对码字进行多层次分级分组,采用前导0个数判断法,用简单的加法操作代替非常耗时的查表操作。基于以上基本原则进行算法各个方面的优化和改进,结果表明,降低了一定的存储空间,明显提高了解码速度。  相似文献   

11.
教与学优化算法(TLBO)是一种基于课堂教学学习过程的新型元启发式算法,在解决众多科学和工程问题方面表现出了卓越的性能.然而,许多研究表明,TLBO在问题的求解过程中搜索能力较差,算法易陷入局部最优.针对这一问题,提出了一种基于莱维飞行和高斯分布的教与学优化算法(LTLBO-GD).一方面,将原有的TLBO算法与莱维飞行策略相融合,在教学阶段前期增强老师的学习能力,选择出教学能力突出的老师.另一方面,在学习阶段加入高斯分布局部搜索算子,引导学生进行自学习模式,高斯分布主要是对班级中某一维度进行搜索,从而增强算法单维搜索能力和收敛速度.测试实验结果表明,LTLBO-GD算法在求解精度和收敛速度上都有了显著的改善,并且在求解效果上也明显优于TLBO算法,在典型的标准测试函数优化问题中其优越性更加突出.  相似文献   

12.
针对粒子群优化算法在迭代后期容易陷入局部最优、收敛速度变慢,精度降低、计算效率变差等缺点,提出了一种改进的粒子群优化算法.此算法通过引入惯性权重来调节粒子的速度变化,动态变化的学习因子来平衡粒子的社会学习能力和自我学习能力.通过测试函数检验,结果显示该算法能够有效摆脱局部最优,整个收敛速度明显变快,精度大幅提高.  相似文献   

13.
在多关系连接查询中,普通半连接查询方法没有优化子查询的半连接顺序,导致查询代价较高,为此,本文提出了一种改进的半连接查询优化算法.首先,将多关系连接组织成较小代价的类树形结构,然后利用半连接操作对处于根节点处的关系进行最大化缩减,并以此为基础利用PERF位向量对其他节点进行缩减,最后回收缩减关系进行连接操作.模拟实验表明改进的半连接查询优化算法能够有效地缩减查询关系,降低查询代价.  相似文献   

14.
在传统和声搜索优化算法的基础上,提出一种自适应双子和声搜索优化算法。通过建立主辅两个和声库正反双向进行迭代搜索,并对和声算法中的音调调整概率和音调微调带宽两个重要参数进行自适应调整,提高了算法的动态适应性以及局部搜索和全局搜索的协调能力。通过构造两组搜索方向各异、相互协同的主、辅和声,充分利用了搜索域内的隐含信息,扩展搜索范围,从而实现了全局最优。在试验中分别对3个复杂函数进行测试,结果表明该算法具有较好的全局搜索能力和收敛速度,在一定程度上提高了最优值的搜索能力,达到了预期效果。  相似文献   

15.
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems (IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.  相似文献   

16.
蚁群算法作为一种新型的模拟进化算法,具有分布计算和信息正反馈等优点,但蚁群算法与其他进化算法一样存在收敛速度慢,易陷于局部最优等缺陷。针对这一问题,提出一种改进的蚁群算法,结合遗传算法和图论中的最邻近算法,并自适应地初始化信息素和限定信息素的大小范围。将该算法应用于旅行商问题(traveling salesman problem,TSP)求解,与基本蚁群算法比较,数值实验结果表明,这种改进算法能有效抑制算法陷入局部最优的缺陷,从而提高了解的全局搜索能力和解的质量。  相似文献   

17.
王冰  刁鸣  高洪元 《应用科技》2008,35(3):16-19
针对传统的离散粒子群优化算法后期容易陷入局部收敛这一缺点,提出了一种新的离散粒子群算法,使用了新的运动方程来更新粒子的位置,并将贪心算法的思想引入粒子群优化算法中,在粒子的位置初始化的过程中,把采用贪心策略所得出的结果作为一个粒子的初始位置.用改进的算法求解背包问题,通过与其他文献中仿真实例的计算和结果比较,表明该算法在全局寻优能力和收敛性上都优于传统的粒子群算法.  相似文献   

18.
一种改进的自适应蚁群算法及其应用研究   总被引:1,自引:0,他引:1  
蚁群算法作为一种新型的模拟进化算法,具有分布计算和信息正反馈等优点,但蚁群算法与其他进化算法一样存在收敛速度慢,易陷于局部最优等缺陷。针对这一问题,提出一种改进的蚁群算法,结合遗传算法和图论中的最邻近算法,并自适应地初始化信息素和限定信息素的大小范围。将该算法应用于旅行商问题(traveling salesman problem,TSP)求解,与基本蚁群算法比较,数值实验结果表明,这种改进算法能有效抑制算法陷入局部最优的缺陷,从而提高了解的全局搜索能力和解的质量。  相似文献   

19.
提出了一种有效的快速k近邻分类文本分类算法,即PSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练文档集中进行有指导的全局随机搜索. 在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,从而可以快速找到测试样本的k个近邻. 以Reuters 21578文档集分类为例验证算法的有效性,结果表明,保持k近邻法分类精度,新算法比KNN算法降低分类时间70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号