首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO2-4、NO-3和NH+4,大部分以(NH4)2SO4和NH4NO3形式存在;NO-3和SO2-4质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

2.
为了解鞍山市夏季大气颗粒物PM2.5中元素的污染水平和来源,2014年7月2~15日在鞍山市6个站点进行了PM2.5的样品采集,对PM2.5载带的元素进行了浓度特征和富集因子分析,并通过主成分分析确定了鞍山市PM2.5的主要来源.鞍山市夏季PM2.5载带元素浓度主要由Na、Mg、Al、K、Ca、Fe、Zn等7种元素贡献,占总浓度的96.8%以上,Pb的浓度为50.07ng/m3,Cd的浓度为0.91ng/m3,Mn的浓度为16.81ng/m3,Ni的浓度为3.16ng/m3,均未超出GB3095-2012和WHO规定的浓度限值.元素Cr、Ca、Ni、Cu为显著富集或强烈富集水平,Cd、Pb、Zn属于极强富集,表明鞍山市夏季PM2.5污染属于城市交通、燃煤、钢铁冶炼等复合型污染.主成分分析结果显示,鞍山市夏季PM2.5中富集元素的主要人为源包括钢铁冶炼、机动车尾气和建筑扬尘.  相似文献   

3.
对2011年11月—2013年1月在砣矶岛国家大气背景站采集的75个大流量PM2.5样品的多环芳烃含量和组成进行分析。结果表明,砣矶岛16种优控多环芳烃(Σ16PAHs)的总质量浓度为4.7~41 ng/m3(平均(17±10)ng/m3),季节上表现为冷季高、暖季低的变化趋势。综合气流轨迹分析、分子标志物、特征化合物比值、潜在源贡献指数分析等方法发现,夏季山东半岛的生物质燃烧是主要污染源;冷季主要受京津冀及周边地区的燃煤排放和复合污染输出的共同影响。砣矶岛PAHs的总毒性当量(Ba Peq)在0.54~8.2 ng/m3之间,平均水平为2.8 ng/m3,39%以上的样品超过国标阈值,说明环渤海地区PAHs健康风险存在区域性。  相似文献   

4.
为了解太原市PM10和PM2.5中重金属污染状况,采集了太原市春季环境空气中可吸入颗粒物(PM10)和细颗粒物(PM2.5)样品,利用等离子体发射光谱仪对样品中As和8种重金属(Mn,Cu,Zn,Pb,Cr,Ni,Co,Cd)的含量进行测定,并对As和重金属健康风险进行评价。结果显示:太原市PM10和PM2.5中均以Zn的质量浓度最大,分别为369.08ng/m3和271.74ng/m3;As的质量浓度相对较小,分别为3.41ng/m3和2.33ng/m3;各点位As、Cu、Zn、Pb、Cr和Cd元素主要显含在PM2.5中。PM10和PM2.5通过呼吸吸入途径产生的成人非致癌风险和致癌风险为儿童的3.98~4.00倍;非致癌风险总和(Hi)低于人体可接受的水平,不具有非致癌风险;PM2.5和PM10的致癌风险介于人体可接受范围,不具有致癌风险。各点位As和重金属在PM2.5和PM10中的非致癌风险比值PHi小于1;1号、3号点位致癌风险比值QR大于1,且对人体健康危害最严重的为可吸入颗粒物PM10,需引起高度重视。  相似文献   

5.
为更好地了解介休市城区PM2.5中金属元素的污染特征和来源,本研究在2020年1月至12月期间利用AMMS-100大气重金属在线分析仪对PM2.5中金属元素浓度开展逐时观测,以研究PM2.5中14种金属元素的变化特征.采样期间14种金属元素的浓度范围从小于10 ng/m3到5000 ng/m3,金属元素浓度均值的排名顺...  相似文献   

6.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m^3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m^3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO4^2-、NO3^-和NH4^+,大部分以(NH4)2SO4和NH4NO3形式存在;NO3^-和SO4^2-质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

7.
针对沈阳市大气环境分析了2011年7月至2012年3月期间沈阳市太原街、北陵街及科技园三处的PM2.5含量,研究表明:监测位置PM2.5超标率为15%,变化范围在0.02~0.07 mg/m3之间,冬季浓度高于夏季浓度,反映了主要源排放(燃煤)变化与气象条件的共同影响,并且监测PM10含量与PM2.5存在很好的线形关系,同时对PM2.5离子组分和多环芳烃进行了分析,发现PM2.5系颗粒物含有阴离子、多环芳烃等污染物,多环芳烃的含量在16.0~35.1 ng/m3之间.  相似文献   

8.
为探讨高原城市昆明大气中水溶性无机离子的季节和空间变化特征,选取2013年4月至2014年5月昆明市3个采样点进行了PM2.5样品采集,分析了PM2.5及水溶性无机离子的污染特征,并结合气象因素、硫氧化率、氮氧化率及主成分分析法对其主要来源进行了分析.结果表明:PM_(2.5)质量浓度季节变化为春((105.9±48.0)μg/m~3)冬((92.7±51.6)μg/m~3)秋((74.7±41.4)μg/m~3)夏((72.2±30.3)μg/m~3).总水溶性无机离子质量浓度季节变化特征为夏((38.0±18.3)μg/m~3)冬((22.0±11.4)μg/m~3)春((18.4±4.8)μg/m~3)秋((13.6±3.1)μg/m~3);其中SO~(2-)_4、Ca~(2+)、NO~-_3及NH~+_4为PM_(2.5)中主要的水溶性无机离子,分别占总离子质量浓度的27.7%、17.8%、15.2%和9.5%;二次离子质量浓度之和年均为13.9μg/m~3,占PM_(2.5)质量浓度的16.5%,表明高原城市昆明大气中二次组分较少.NO~-_3/SO~(2-)_4为0.21~0.68之间,表明固定源是主要污染贡献源.主成分分析结果表明水溶性无机离子主要来源于土壤扬尘和建筑扬尘的混合源、燃煤源和工艺过程源.  相似文献   

9.
北京市2014年大气污染物空间分布特征分析   总被引:1,自引:0,他引:1  
基于地理信息系统ArcGIS 10.2平台,采用反距离权重空间插值模型对2014年北京市35个环境质量监测点监测到的主要大气污染物:一氧化碳(CO)、二氧化氮(NO2)、臭氧(O3)、可吸入颗粒物(PM10)、细颗粒物(PM2.5)和二氧化硫(SO2)质量浓度年均值的变化规律及空间分布特性进行了分析.结果表明,在质量浓度分布上,2014年北京市CO、NO2、SO2、O3、PM10、PM2.5这6类大气污染物的质量浓度分别位于1~3 mg/m3、17.22 ~ 105.4 μg/m3、14.27~25.75 μg/m3、27~ 81μg/m3、76 ~ 179 μg/m3、67 ~ 123 μg/m3范围内.由此可知,北京市2014年大气污染物年均质量浓度除PM10和PM2.5外的其余污染物质量浓度并不高,都在轻度污染范围之内;在空间分布上,除O3质量浓度空间分布上呈现出北高南低的特征外,其余污染物均呈现南部、中部质量浓度较高,北部地区质量浓度较低的特征.  相似文献   

10.
校园大气环境不同高度PM_(2.5)的物理化学特征比较   总被引:1,自引:0,他引:1  
大气细颗粒物(PM2.5)已经成为影响我国大气环境质量和人们身体健康的首要污染物.作为青少年集中学习和生活的校园环境的空气质量状况已经成为多方关注的热点.为研究校园环境大气细颗粒物的空间分布状况及其物理化学特征,在不同高度(5,40 m)设立采样点,同步采集大气PM2.5样品,利用高分辨扫描电子显微镜-X射线能谱仪(scanning electron microscope-energy dispersive spectrometer,SEM-EDS)分析了不同高度和不同时间段校园大气环境中PM2.5的微观组成、化学组分,得出如下主要结论:校园环境PM2.5的微观组分主要有燃煤飞灰颗粒、矿物颗粒(原生的和新生的矿物颗粒)、烟尘集合体以及无法鉴定的颗粒物;5 m高度处采集的颗粒物的质量浓度和数浓度均高于40 m高度处,5 m高度处PM2.5的矿物颗粒相对较多,而40 m高度处PM2.5的烟尘集合体相对较多;晚上样品中颗粒物数量和种类都比白天要多.  相似文献   

11.
文章建立了一种石墨全自动消解电感耦合等离子体质谱法(ICP-MS)测定大气颗粒物PM2.5中重金属元素的方法,样品采用硝酸-氢氟酸-过氧化氢-高氯酸消解后上机测定,空白和样品加标回收率均在85%~120%之间,主量元素测定的精密度(RSD%)均小于3%,次量、微量元素的(RSD%)均小于10%。当空气采样量为150m3(标准状况)时,各元素的检出限在0.003~12.6ng/m3之间。应用建立的方法分析了兰州市秋冬季PM2.5中重金属含量,结果表明该方法准确可靠。  相似文献   

12.
2003年9月至2004年2月在西安站点开展了大气PM2.5和PM10中碳气溶胶的连续观测,并采集了三类主要污染来源样品(燃煤,机动车尾气和生物质燃烧)进行对比分析,采用IMPROVE-TOR方法准确地测量了样品的有机碳(OC),元素碳(EC)及其中的8个碳组分含量.西安秋季和冬季大气PM2.5中OC的平均含量ρOC分别为(34.1±18.0),(61.9±33.2)μg·m-3,EC的平均含量ρEC为(11.3±6.9),(12.3±5.3)μg·m-3.OC和EC均主要赋存于PM2.5粒级中.秋季OC和EC的相关性好(R2>0.90),冬季一般(R2=0.66).总碳气溶胶在秋季PM2.5中占(48.8±10.1)%,在冬季也达到了(45.9±7.5)%.所有观测日的ρOC/ρEC比值均大于2.0,秋季PM2.5中ρOC/ρEC平均为3.3,冬季为5.1,这可能主要与直接排放来源有关.由碳气溶胶的8个碳组分数据,采用绝对主分量分析获得了主要排放来源对总碳的贡献份额,即秋季汽油车尾气占73%,柴油车尾气占23%,生物质燃烧占4%,而冬季燃煤占了44%,汽油车尾气占44%,生物质燃烧占9%,柴油车占3%.  相似文献   

13.
含氮化合物是大气细颗粒物(PM_(2.5))的重要组分,其中含氮有机物是含氮组分的重要存在形式,对陆地和水生生态系统影响较大.于2015年4月、7月和10月分别采集了金华市3个具有代表性站点的PM_(2.5)样品,分析了其中水溶性有机氮(water-soluble organic nitrogen,WSON)的质量浓度分布及季节变化特征.结果表明:金华市PM2.5中WSON质量浓度范围为0.06~6.90μg/m~3,平均1.90μg/m~3,对水溶性总氮(water-soluble total nitrogen,WSTN)的平均贡献率为31%.WSON的质量浓度分布具有明显的季节变化特征:秋季较高,夏季较低,而在夏季WSON对WSTN的贡献率最高.金华市PM_(2.5)中WSON的主要来源可能是含氮前体物在大气中的二次转化以及生物质燃烧活动.  相似文献   

14.
北京市大气PM2.5的季节特征和空间趋势(英文)   总被引:1,自引:0,他引:1  
近年来,北京地区雾霾污染事件频发,大气PM2.5污染引起国内外强烈关注.利用北京市35个PM2.5监测站自2012年10月开始发布数据至2013年9月的小时观测数据,对其时空变化特征进行了分析.结果表明:(1)35个站点的平均PM32.5浓度为88.6μg/m;(2)PM2.5浓度与风速等气象要素关系密切,低浓度通常出现在大风天或者大风过后的紧邻时段,重污染天通常风速小,相邻天的PM2.5浓度可相差几倍甚至十倍以上;(3)PM2.5浓度随季节变化较大,1月和6月份较高,4月、8月和11月相对较低;(4)PM2.5浓度随站点类型变化明显,交通环境站点的平均浓度高于城市环境评价站点(可超过10%);(5)北部PM2.5浓度低于东部和南部,而与河北交界的南部和西南地区浓度为全区最高;(6)PM2.5浓度由北到南整体上呈线性增加趋势,每向南10 km,PM2.5平均浓度升高4.6μg/m3(R2=0.89),南部PM2.5平均浓度接近北部2倍;(7)PM2.5平均浓度存在一定的局部变化,但相邻站点变化幅度一般在20%以内.  相似文献   

15.
以重庆市沙坪坝区国控空气自动监测点为例,研究了细颗粒物(PM2.5)和可吸入颗粒物(PM10)污染现状和相关性.结果表明:颗粒物,尤其是细颗粒物(PM2.5),是影响城市环境空气质量的主要污染因子,尤其是在春、冬季节易导致污染天气.大气扩散条件不佳,颗粒物质量浓度越高,细颗粒物(PM2.5)在可吸入颗粒物(PM10)中的比重也越高.细颗粒物(PM2.5)和可吸入颗粒物(PM10)具有较好的统计相关性,两者可能具有同源性,在环境空气污染中的变化规律相似,有可能遵循相同的迁移转化规律,可以进行协同治理.  相似文献   

16.
郑州市大气可吸入颗粒物单颗粒污染特征分析   总被引:1,自引:0,他引:1  
分析了2005年郑州市大气可吸入颗粒物(PM10)的污染特征,应用高分辨率场发射扫描电镜(FESEM)和图像分析技术,研究了郑州市2005年夏季大气单颗粒物的形貌特征以及PM10的数量-粒度和体积-粒度分布.研究表明,2005年郑州市大气PM10污染比较严重,其污染程度从高到低依次为春、冬、秋、夏:烟尘集合体、不规则状矿物颗粒物在郑州市2005年夏季大气PM10中占有较大数量,PM10的数量-等效球直径分布的峰值在0.1~0.2 μm,PM10的体积.等效球直径分布的峰值则出现在0.7~0.8 μm和1~2.5μm范围内,说明在郑州市夏季大气PM10中,细粒子数量占优势,较粗颗粒(主要是矿物颗粒)在数量上对PM10贡献很小,但是对总体积(总质量)的贡献很大.  相似文献   

17.
采集并分析了南普陀寺庙寺内外大气颗粒物中16种优控PAHs,寺内浓度(19.16~55.76 ng/m3)与车站浓度(33.32~123.28 ng/m3)相当,但都大于厦大校园站点的浓度(8.06~34.37 ng/m3).南普陀寺内和车站样品中苯并[ghi]苝的贡献最大,且寺内样品中能检出较高含量的惹烯.典型特征化合物比值分析表明,大气颗粒物中PAHs主要来自交通源(汽车尾气).  相似文献   

18.
何敏  李婷  黄艺 《天津科技》2021,(2):80-85
基于西南地区攀枝花市大气监测站5个站点的大气污染物数据,整理了2019年PM10和PM2.5质量浓度的变化趋势,分析了不同季节不同粒径颗粒物浓度的分布特征与气象因素之间的相关性.结果显示:2019年攀枝花市PM10、PM2.5的质量浓度年均值分别为52.8±16.2μg/m3和29.2±10.5μg/m3;由PM10与...  相似文献   

19.
广州夏季大气中碳气溶胶浓度水平及污染特征   总被引:13,自引:0,他引:13  
2002年6-7月于广州市3个采样点采集PM10和PM25样品,测定了PM10,PM25以及元素碳(EC)和有机碳(OC)的浓度.PM10和PM2.5平均浓度分别为124.77μg@m-3及78.13μg@m-3.PM10和PM2.5中的OC浓度分别为22.3μg@m-3和15.80μg@m-3,EC浓度分别为7.78和5.90μg@m-3,其中73.8%的OC和77.7%的EC存在于PM25中.在3个采样点PM10和PM25中,OC/EC比值均大于2.0,表明广州夏季大气存在二次污染.各种气象条件对OC、EC浓度及其比值的变化都有不同程度的影响,其中降水和风速是OC、EC浓度变化的主要气象因素.  相似文献   

20.
目的为了科学有效保护地保护秦俑,研究遗址区室内空气工作势在必行。方法通过夏季在秦俑馆采集气溶胶进行分析。结果0.3~0.7μm范围内的气溶胶PM2.5、TSP浓度随游客的增加而增加;室内PM2.5和TSP平均浓度分别为108.4μg/m3和172.4μg/m3,PM2.5占TSP总质量的62.9%。进一步分析证实硫酸盐、有机物及地壳矿物是室内PM2.5的主要组成部分,分别占(32.4±6.2)%、(27.7±8.0)%,(12.5±3.4)%。元素碳、铵盐、硝酸盐分别占室内PM2.5的(3.9±1.5)%,(8.9±2.8)%,(7.0±2.9)%;高含量的硫酸盐、有机物、元素碳、硝酸盐及铵盐的粒径在0.43~3.3μm之间,根据离子平衡计算显示出室内气溶胶酸性特征。结论为科学、有效地控制室内环境,保护秦俑提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号