首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对传统的单一生物特征身份识别由于传感器的噪音以及特征的破损、匹配等缺陷,往往不能正确识别的情况,提出了一种基于语音和人脸的多生物特征身份识别方法.分别提取语音特征和人脸特征作为识别的依据,并用神经网络在特征层上进行融合识别.实验证明,这种方法可以充分挖掘特征之间的关系,在同等条件下,具有更高的识别率.  相似文献   

2.
基于人脸和人耳的多模态生物特征识别   总被引:1,自引:1,他引:1  
单一模式生物特征识别系统由于存在一些固有的局限性,有时难以满足实际应用的需求,本文提出了基于正面人脸和人耳信息融合的多模态生物特征识别方法.针对USTB人耳图像库和ORL人脸图像库,利用核Fisher鉴别分析方法分别进行了人耳识别、人脸识别和人脸人耳融合识别,融合策略包括图像层融合和特征层融合两种.识别结果表明基于人脸人耳信息融合的多模态识别的识别率优于单体的人耳或人脸识别.这说明融合多种生物特征的多模态识别可以提高身份认证的准确率,也为实现非打扰式识别提供了一种新的途径.  相似文献   

3.
基于KCCA的特征融合方法及人耳人脸多模态识别   总被引:1,自引:0,他引:1  
鉴于人耳和人脸特殊的生理位置关系,本文从非打扰识别的角度出发,提出一种基于人耳人脸的多模态生物特征识别技术。首先仅采集侧面人脸图像,然后将核方法引入到典型相关分析(CCA)中,提出基于核CCA的特征融合方法,抽取两组特征矢量的非线性典型相关特征构成有效鉴别特征矢量用于识别,并应用其提取人耳人脸的关联特征进行个体的分类识别。实验结果验证了基于KCCA特征融合方法的有效性;此外,与单一的人耳或侧面人脸特征体识别比较,基于人耳和人脸融合的多模态生物特征识别性能得到提高,这为非打扰生物特征识别提供了一条有效的途径。  相似文献   

4.
为了保持步态识别的优势,克服单一生物特征识别的不足,提高远距离的身份识别率,提出了一种步态与侧面人脸在特征层上融合识别方法.首先利用二向图像矩阵主成分分析,对步态能量图和侧面人脸图分别进行特征提取与降维处理,得到初始特征矩阵,并将得到的初始特征矩阵进行矢量化、特征组合,获得组合特征向量.然后利用多重判别分析法对组合特征向量进行特征融合,获得步态与人脸的融合特征向量,最后采用最近邻法进行身份识别.利用CASIA Dataset B步态数据库对上述方法进行了验证.结果表明,该方法提高了身份识别的正确率,验证了该方法的有效性,为多生物特征识别提供了一种新的方法.  相似文献   

5.
一种PCA和SVM多生物特征融合的视频人脸识别   总被引:1,自引:0,他引:1  
分析了视频人脸跟踪识别过程中高效特征提取、长时间人脸遮挡、光照变化及多目标跟踪识别等问题,讨论了基于PCA和SVM人脸识别优点及不足,提出了基于PCA和SVM多生物特征层融合的人脸识别模型,设计了多生物特征人脸识别算法,对实验过程进行了描述并对实验结果进行了分析.结果表明,提出的算法识别率高于任一单一算法、更适合实时视频监控取证系统使用.  相似文献   

6.
特征匹配是目标识别的基础,文章针对特征描述子在多变复杂场景中的自适应问题,从特征向量的低维度、高稳健、易计算3个方面,结合核主成分降维、匹配核的空间映射以及Power-law归一化等特征处理方法,提出一种面向复杂变换环境的集成低维度的特征匹配算法.首先,采用线性内积核将特征向量映射至高维空间提取特征主成分,然后通过He...  相似文献   

7.
在研究传统人脸特征提取算法的基础上,提出基于LDA-LLE的人脸识别算法。该算法同时具有线性方法和非线性方法的优点,对人脸图像的常见变化,如光照、姿态等具有一定的鲁棒性;研究了基于Hough变换的虹膜特征定位算法,该定位算法通过检测两个圆和两条直线来实现虹膜图像的精确定位;然后分别利用SVM和KCCA在匹配层和特征层实现了的人脸图像和虹膜图像的融合;并利用ORL人脸库和IITD虹膜库组成的多模特征库上进行仿真实验。实验结果证明了这两种融合算法的有效性,尤其在小样本的情况下,该融合方法也能取得较高的识别率。  相似文献   

8.
针对单一的人脸特征在识别中的局限性,提出了一种基于特征融合的人脸识别方法,首先利用主成分分析获得原始输入图像的特征脸,经图像重构处理得到原始图像的余像,然后抽取余像的特征脸,最后将两种特征脸按一定的权重融合成一个组合特征进行人脸识别,通过针对ORL人脸数据库的实验表明:该特征融合方法的人脸识别是行之有效的,优于传统特征脸的方法,识别率可以达到91.5%.  相似文献   

9.
针对单一生物特征识别方法易受干扰、应用受限制等问题,提出了一种基于虹膜和人脸的多生物特征融合方法以提高身份识别的精度及可靠性.该融合方法利用 Log-Gabor 相位编码算法和Laplacianfaces 算法对虹膜和人脸进行特征提取及匹配,然后在匹配层对两种生物特征的匹配得分值使用最小最大概率机策略进行融合,最后利用融合后得分值进行决策.该方法与单生物特征识别方法相比,识别性能明显提高.在UBIRIS虹膜库和ORL人脸库构成的多模生物特征库中进行了测试,实验结果表明:该方法的等错误率可降低到 0.28%,比单一虹膜和单一人脸方法分别降低了0.69%和 1.62%,与采用传统融合策略的方法相比,等错误率也降低了 0.2%以上.  相似文献   

10.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。  相似文献   

11.
对人脸图像RGB彩色空间三分量的非线性流形嵌入进行了分析,提出一种结合了流形学习技术和图像彩色信息的人脸识别方法。 该方法对人脸图像的彩色三分量分别采用局部线性嵌入(LLE)方法进行特征提取,提取的特征进行归一化处理和特征融合,采用线性判别分析(LDA)增加分类判别性,最后采用k最近邻法(kNN)进行分类。 该方法中提取的特征,能够保持人脸图像数据的非线性结构,同时利用了人脸图像的彩色信息。 对比实验结果表明,利用了彩色信息的三分量流形学习特征融合方法,比Fisherface特征灰度图像和单个彩色分量的人脸识别性能有所改善。   相似文献   

12.
基于LBP和PCA特征提取的人脸识别   总被引:2,自引:0,他引:2  
为有效解决局部二元模式(LBP)在人脸识别特征提取时维数过高的问题,提出了一种结合LBP特征和主成分分析(PCA)的人脸识别方法.首先,对人脸图像进行分块,提取其LBP直方图特征,然后使用PCA方法对特征向量进行降维,最后将降维后的特征向量用于识别.在FERET人脸库上的实验结果表明:相对于原始LBP表达方法,结合LBP和PCA的人脸表达能有效降低计算复杂度,同时也较好地保持了原有识别精度.  相似文献   

13.
提出一种采用高光谱图像的人脸识别算法.根据人脸肤色在可见光范围内的光谱特征进行波段选择并依据人脸结构特征,对选定波段的灰度图像进行Gabor特征提取.最后分别进行特征层上的融合识别和决策层上的融合识别.特征层融合的权重系数由反射率和正确识别率共同决定,决策层融合算法采用"最高票当选制"原则.利用香港理工大学的高光谱人脸数据库对进行验证.结果证明,本文算法在识别速度和正确识别率方面都得到了显著改善,在3幅训练样本情况下,正确识别率达到96.5%.相对于全波段参与识别,识别速度提高了约3倍.   相似文献   

14.
在主成分分析方法(PCA)的基础上,采用3种神经网络(BP、RBF、LVQ)分类器进行人脸识别实验研究.实验中引入多数投票法(MVS),构建了多分类器组合决策体系,对分类结果进行决策融合.最后,将使用此决策体系的人脸识别结果与使用单一分类器的人脸识别结果进行对比分析.分析结果显示,采用MVS规则的人脸识别系统,能有效提高人脸识别系统的准确率和稳定性,且方法简单可行.  相似文献   

15.
传统的主成分分析(PCA)方法在图像识别时需将图像矩阵转化成向量,造成图像向量的维数偏高,使得整个特征提取过程的计算量较大;在PCA的基础上,有人提出了二维主成分分析(2DPCA)的方法,但其本质是对图像矩阵按行进行特征提取,虽然消除了图像列的相关性,但是仍然忽视了行的相关性;因此,在此考虑一种改进的方法能同时消除图像行、列的相关性,并通过实验得到了比2DPCA更高效的识别率。  相似文献   

16.
为使提取到的独立成分有利于人脸的分类识别,在用核独立成分分析(KICA)进行特征提取后,选用改进后的k最近邻的Relief方法进行特征选择。改进后的Relief算法可以减少噪声污染,并能处理小样本问题,使选择后的人脸特征较好地用于分类。通过在 AR人脸库上的实验,并与类内类间距离的特征选择方法进行比较,证明了该方法的有效性。  相似文献   

17.
在主成分分析方法(PCA)的基础上,采用3种神经网络(BP、RBF、LVQ)分类器进行人脸识别实验研究.实验中引入多数投票法(MVS),构建了多分类器组合决策体系,对分类结果进行决策融合.最后,将使用此决策体系的人脸识别结果与使用单一分类器的人脸识别结果进行对比分析.分析结果显示,采用MVS规则的人脸识别系统,能有效提高人脸识别系统的准确率和稳定性,且方法简单可行.  相似文献   

18.
基于独立分量分析的普适人脸识别系统   总被引:1,自引:0,他引:1  
在模式识别领域,变量间的高阶统计关系开始受到更多关注.但目前许多人脸识别系统一方面依赖二阶统计关系,另一方面又需先采用主分量分析技术对样本进行降维.主分量分析技术自身却对二阶统计关系敏感,因此需要寻找一种对高阶统计关系敏感的算法作后续处理.为此作者提出了一种基于独立分量分析的普适人脸识别系统,并与传统的基于Fisher线性判别规则的人脸识别系统进行了比较分析,重点讨论在光照方向大幅度变化和人脸图像不完整情况下两种系统性能的优劣.理论分析和实验结果均证实,在这两种情况下,基于独立分量分析的普适人脸识别系统的性能优于传统的基于Fisher线性判别规则的人脸识别系统的性能.  相似文献   

19.
在采用主成分分析进行人脸重构和识别时,仅从样本自身提取特征向量会导致识别误差。因此,在参考主成分分析的基础上,采用偏最小二乘回归进行人脸图像的训练和识别,并对偏最小二乘回归引入核函数。在ORL人脸数据库上的实验结果表明,偏最小二乘回归明显优于主成分分析,同时核偏最小二乘回归也显著提高了识别正确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号