首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal‐weighted averaging of the forecasts from a large number of different models, each of which is a linear regression relating inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian model averaging for pseudo out‐of‐sample prediction of US inflation, and find that it generally gives more accurate forecasts than simple equal‐weighted averaging. This superior performance is consistent across subsamples and a number of inflation measures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The specification choices of vector autoregressions (VARs) in forecasting are often not straightforward, as they are complicated by various factors. To deal with model uncertainty and better utilize multiple VARs, this paper adopts the dynamic model averaging/selection (DMA/DMS) algorithm, in which forecasting models are updated and switch over time in a Bayesian manner. In an empirical application to a pool of Bayesian VAR (BVAR) models whose specifications include level and difference, along with differing lag lengths, we demonstrate that specification‐switching VARs are flexible and powerful forecast tools that yield good performance. In particular, they beat the overall best BVAR in most cases and are comparable to or better than the individual best models (for each combination of variable, forecast horizon, and evaluation metrics) for medium‐ and long‐horizon forecasts. We also examine several extensions in which forecast model pools consist of additional individual models in partial differences as well as all level/difference models, and/or time variations in VAR innovations are allowed, and discuss the potential advantages and disadvantages of such specification choices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this study we evaluate the forecast performance of model‐averaged forecasts based on the predictive likelihood carrying out a prior sensitivity analysis regarding Zellner's g prior. The main results are fourfold. First, the predictive likelihood does always better than the traditionally employed ‘marginal’ likelihood in settings where the true model is not part of the model space. Secondly, forecast accuracy as measured by the root mean square error (RMSE) is maximized for the median probability model. On the other hand, model averaging excels in predicting direction of changes. Lastly, g should be set according to Laud and Ibrahim (1995: Predictive model selection. Journal of the Royal Statistical Society B 57 : 247–262) with a hold‐out sample size of 25% to minimize the RMSE (median model) and 75% to optimize direction of change forecasts (model averaging). We finally apply the aforementioned recommendations to forecast the monthly industrial production output of six countries, beating for almost all countries the AR(1) benchmark model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We investigate the dynamic properties of the realized volatility of five agricultural commodity futures by employing the high‐frequency data from Chinese markets and find that the realized volatility exhibits both long memory and regime switching. To capture these properties simultaneously, we utilize a Markov switching autoregressive fractionally integrated moving average (MS‐ARFIMA) model to forecast the realized volatility by combining the long memory process with regime switching component, and compare its forecast performances with the competing models at various horizons. The full‐sample estimation results show that the dynamics of the realized volatility of agricultural commodity futures are characterized by two levels of long memory: one associated with the low‐volatility regime and the other with the high‐volatility regime, and the probability to stay in the low‐volatility regime is higher than that in the high‐volatility regime. The out‐of‐sample volatility forecast results show that the combination of long memory with switching regimes improves the performance of realized volatility forecast, and the proposed model represents a superior out‐of‐sample realized volatility forecast to the competing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The paper forecasts consumer price inflation in the euro area (EA) and in the USA between 1980:Q1 and 2012:Q4 based on a large set of predictors, with dynamic model averaging (DMA) and dynamic model selection (DMS). DMA/DMS allows not solely for coefficients to change over time, but also for changes in the entire forecasting model over time. DMA/DMS provides on average the best inflation forecasts with regard to alternative approaches (such as the random walk). DMS outperforms DMA. These results are robust for different sample periods and for various forecast horizons. The paper highlights common features between the USA and the EA. First, two groups of predictors forecast inflation: temporary fundamentals that have a frequent impact on inflation but only for short time periods; and persistent fundamentals whose switches are less frequent over time. Second, the importance of some variables (particularly international food commodity prices, house prices and oil prices) as predictors for consumer price index inflation increases when such variables experience large shocks. The paper also shows that significant differences prevail in the forecasting models between the USA and the EA. Such differences can be explained by the structure of these respective economies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Forecasting prices in electricity markets is a crucial activity for both risk management and asset optimization. Intra‐day power prices have a fine structure and are driven by an interaction of fundamental, behavioural and stochastic factors. Furthermore, there are reasons to expect the functional forms of price formation to be nonlinear in these factors and therefore specifying forecasting models that perform well out‐of‐sample is methodologically challenging. Markov regime switching has been widely advocated to capture some aspects of the nonlinearity, but it may suffer from overfitting and unobservability in the underlying states. In this paper we compare several extensions and alternative regime‐switching formulations, including logistic specifications of the underlying states, logistic smooth transition and finite mixture regression. The finite mixture approach to regime switching performs well in an extensive, out‐of‐sample forecasting comparison. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In time-series analysis, a model is rarely pre-specified but rather is typically formulated in an iterative, interactive way using the given time-series data. Unfortunately the properties of the fitted model, and the forecasts from it, are generally calculated as if the model were known in the first place. This is theoretically incorrect, as least squares theory, for example, does not apply when the same data are used to formulates and fit a model. Ignoring prior model selection leads to biases, not only in estimates of model parameters but also in the subsequent construction of prediction intervals. The latter are typically too narrow, partly because they do not allow for model uncertainty. Empirical results also suggest that more complicated models tend to give a better fit but poorer ex-ante forecasts. The reasons behind these phenomena are reviewed. When comparing different forecasting models, the BIC is preferred to the AIC for identifying a model on the basis of within-sample fit, but out-of-sample forecasting accuracy provides the real test. Alternative approaches to forecasting, which avoid conditioning on a single model, include Bayesian model averaging and using a forecasting method which is not model-based but which is designed to be adaptable and robust.  相似文献   

8.
Four methods of model selection—equally weighted forecasts, Bayesian model‐averaged forecasts, and two models produced by the machine‐learning algorithm boosting—are applied to the problem of predicting business cycle turning points with a set of common macroeconomic variables. The methods address a fundamental problem faced by forecasters: the most useful model is simple but makes use of all relevant indicators. The results indicate that successful models of recession condition on different economic indicators at different forecast horizons. Predictors that describe real economic activity provide the clearest signal of recession at very short horizons. In contrast, signals from housing and financial markets produce the best forecasts at longer forecast horizons. A real‐time forecast experiment explores the predictability of the 2001 and 2007 recessions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A Bayesian structural model with two components is proposed to forecast the occurrence of algal blooms, multivariate mean‐reverting diffusion process (MMRD), and a binary probit model with latent Markov regime‐switching process (BPMRS). The model has three features: (a) forecast of the occurrence probability of algal bloom is directly based on oceanographic parameters, not the forecasting of special indicators in traditional approaches, such as phytoplankton or chlorophyll‐a; (b) augmentation of daily oceanographic parameters from the data collected every 2 weeks is based on MMRD. The proposed method solves the problem of unavailability of daily oceanographic parameters in practice; (c) BPMRS captures the unobservable factors which affect algal bloom occurrence and therefore improve forecast accuracy. We use panel data collected in Tolo Harbour, Hong Kong, to validate the model. The model demonstrates good forecasting for out‐of‐sample rolling forecasts, especially for algal bloom appearing for a longer period, which severely damages fisheries and the marine environment.  相似文献   

10.
We introduce a versatile and robust model that may help policymakers, bond portfolio managers and financial institutions to gain insight into the future shape of the yield curve. The Burg model forecasts a 20‐day yield curve, which fits a pth‐order autoregressive (AR) model to the input signal by minimizing (least squares) the forward and backward prediction errors while constraining the autoregressive parameters to satisfy the Levinson–Durbin recursion. Then, it uses an infinite impulse response prediction error filter. Results are striking when the Burg model is compared to the Diebold and Li model: the model not only significantly improves accuracy, but also its forecast yield curves stick to the shape of observed yield curves, whether normal, humped, flat or inverted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the impact of both asset and macroeconomic forecast errors on inflation forecast errors in the USA by making use of a two‐regime model. The findings document a significant contribution of both types of forecast errors to the explanation of inflation forecast errors, with the pass‐through being stronger when these errors move within the high‐volatility regime. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
13.
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with model averaging estimation for conditional volatility models. Given a set of candidate models with different functional forms, we propose a model averaging estimator and forecast for conditional volatility, and construct the corresponding weight-choosing criterion. Under some regulatory conditions, we show that the weight selected by the criterion asymptotically minimizes the true Kullback–Leibler divergence, which is the distributional approximation error, as well as the Itakura–Saito distance, which is the distance between the true and estimated or forecast conditional volatility. Monte Carlo experiments support our newly proposed method. As for the empirical applications of our method, we investigate a total of nine major stock market indices and make a 1-day-ahead volatility forecast for each data set. Empirical results show that the model averaging forecast achieves the highest accuracy in terms of all types of loss functions in most cases, which captures the movement of the unknown true conditional volatility.  相似文献   

15.
This paper focuses on the contemporaneous aggregation of moving average processes. It is shown that aggregating across second (or first)‐order (integrated) moving average processes leads to a macro process whose parameters are exact functions of the parameters of its generation process. Similar results are obtained at single equation level when a vector moving average framework is considered. In addition, the out‐of‐sample forecasting properties of aggregate and disaggregate procedures to forecast the aggregate variable are provided. Moreover, it is shown that the condition of equality of aggregate and disaggregate predictors is not necessary for the equality of their mean squared errors. Finally, an application to the euro area real interest rate is presented and discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号