共查询到8条相似文献,搜索用时 0 毫秒
1.
B. D. McCullough 《Journal of forecasting》1996,15(4):293-304
Derivation of prediction intervals in the k-variable regression model is problematic when future-period values of exogenous variables are not known with certainty. Even in the most favourable case when the forecasts of the exogenous variables are jointly normal, the distribution of the forecast error is non-normal, and thus traditional asymptotic normal theory does not apply. This paper presents an alternative bootstrap method. In contrast to the traditional predictor of the future value of the endogenous variable, which is known to be inconsistent, the bootstrap predictor converges weakly to the true value. Monte Carlo results show that the bootstrap prediction intervals can achieve approximately nominal coverage. 相似文献
2.
The problem of prediction in time series using nonparametric functional techniques is considered. An extension of the local linear method to regression with functional explanatory variable is proposed. This forecasting method is compared with the functional Nadaraya–Watson method and with finite‐dimensional nonparametric predictors for several real‐time series. Prediction intervals based on the bootstrap and conditional distribution estimation for those nonparametric methods are also compared. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Dag Kolsrud 《Journal of forecasting》2015,34(8):675-693
A sample‐based method in Kolsrud (Journal of Forecasting 2007; 26 (3): 171–188) for the construction of a time‐simultaneous prediction band for a univariate time series is extended to produce a variable‐ and time‐simultaneous prediction box for a multivariate time series. A measure of distance based on the L∞ ‐norm is applied to a learning sample of multivariate time trajectories, which can be mean‐ and/or variance‐nonstationary. Based on the ranking of distances to the centre of the sample, a subsample of the most central multivariate trajectories is selected. A prediction box is constructed by circumscribing the subsample with a hyperrectangle. The fraction of central trajectories selected into the subsample can be calibrated by bootstrap such that the expected coverage of the box equals a prescribed nominal level. The method is related to the concept of data depth, and thence modified to increase coverage. Applications to simulated and empirical data illustrate the method, which is also compared to several other methods in the literature adapted to the multivariate setting. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Vasilios Plakandaras Theophilos Papadimitriou Periklis Gogas 《Journal of forecasting》2015,34(7):560-573
In this paper we propose and test a forecasting model on monthly and daily spot prices of five selected exchange rates. In doing so, we combine a novel smoothing technique (initially applied in signal processing) with a variable selection methodology and two regression estimation methodologies from the field of machine learning (ML). After the decomposition of the original exchange rate series using an ensemble empirical mode decomposition (EEMD) method into a smoothed and a fluctuation component, multivariate adaptive regression splines (MARS) are used to select the most appropriate variable set from a large set of explanatory variables that we collected. The selected variables are then fed into two distinctive support vector machines (SVR) models that produce one‐period‐ahead forecasts for the two components. Neural networks (NN) are also considered as an alternative to SVR. The sum of the two forecast components is the final forecast of the proposed scheme. We show that the above implementation exhibits a superior in‐sample and out‐of‐sample forecasting ability when compared to alternative forecasting models. The empirical results provide evidence against the efficient market hypothesis for the selected foreign exchange markets. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
We propose two methods of equity premium prediction with single and multiple predictors respectively and evaluate their out‐of‐sample performance using US stock data with 15 popular predictors for equity premium prediction. The first method defines three scenarios in terms of the expected returns under the scenarios and assumes a Markov chain governing the occurrence of the scenarios over time. It employs predictive quantile regressions of excess return on a predictor for three quantiles to estimate the occurrence of the scenarios over an in‐sample period and the transition probabilities of the Markov chain, predicts the expected returns under the scenarios, and generates an equity premium forecast by combining the predicted expected returns under three scenarios with the estimated transition probabilities. The second method generates an equity premium forecast by combining the individual forecasts from the first method across all predictors. For most of predictors, the first method outperforms the benchmark method of historical average and the traditional predictive linear regression with a single predictor both statistically and economically, and the second method consistently performs better than several competing methods used in the literature. The performance of our methods is further examined under different scenarios and economic conditions, and is robust for two different out‐of‐sample periods and specifications of the scenarios. 相似文献
6.
Loukia Meligkotsidou Ekaterini Panopoulou Ioannis D. Vrontos Spyridon D. Vrontos 《Journal of forecasting》2014,33(7):558-576
We propose a quantile regression approach to equity premium forecasting. Robust point forecasts are generated from a set of quantile forecasts using both fixed and time‐varying weighting schemes, thereby exploiting the entire distributional information associated with each predictor. Further gains are achieved by incorporating the forecast combination methodology into our quantile regression setting. Our approach using a time‐varying weighting scheme delivers statistically and economically significant out‐of‐sample forecasts relative to both the historical average benchmark and the combined predictive mean regression modeling approach. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
Thomas Q. Pedersen 《Journal of forecasting》2015,34(2):114-132
Using quantile regression this paper explores the predictability of the stock and bond return distributions as a function of economic state variables. The use of quantile regression allows us to examine specific parts of the return distribution such as the tails and the center, and for a sufficiently fine grid of quantiles we can trace out the entire distribution. A univariate quantile regression model is used to examine the marginal stock and bond return distributions, while a multivariate model is used to capture their joint distribution. An empirical analysis on US data shows that economic state variables predict the stock and bond return distributions in quite different ways in terms of, for example, location shifts, volatility and skewness. Comparing the different economic state variables in terms of their out‐of‐sample forecasting performance, the empirical analysis also shows that the relative accuracy of the state variables varies across the return distribution. Density forecasts based on an assumed normal distribution with forecasted mean and variance is compared to forecasts based on quantile estimates and, in general, the latter yields the best performance. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Lon-Mu Liu 《Journal of forecasting》1991,10(5):521-547
This paper studies the dynamic relationships between US gasoline prices, crude oil prices, and the stock of gasoline. Using monthly data between January 1973 and December 1987, we find that the US gasoline price is mainly influenced by the price of crude oil. The stock of gasoline has little or no influence on the price of gasoline during the period before the second energy crisis, and seems to have some influence during the period after. We also find that the dynamic relationship between the prices of gasoline and crude oil changes over time, shifting from a longer lag response to a shorter lag response. Box-Jenkins ARIMA and transfer function models are employed in this study. These models are estimated using estimation procedure with and without outlier adjustment. For model estimation with outlier adjustment, an iterative procedure for the joint estimation of model parameters and outlier effects is employed. The forecasting performance of these models is carefully examined. For the purpose of illustration, we also analyze these time series using classical white-noise regression models. The results show the importance of using appropriate time-series methods in modeling and forecasting when the data are serially correlated. This paper also demonstrates the problems of time-series modeling when outliers are present. 相似文献