首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
An underlying assumption in Multivariate Singular Spectrum Analysis (MSSA) is that the time series are governed by a linear recurrent continuation. However, in the presence of a structural break, multiple series can be transferred from one homogeneous state to another over a comparatively short time breaking this assumption. As a consequence, forecasting performance can degrade significantly. In this paper, we propose a state-dependent model to incorporate the movement of states in the linear recurrent formula called a State-Dependent Multivariate SSA (SD-MSSA) model. The proposed model is examined for its reliability in the presence of a structural break by conducting an empirical analysis covering both synthetic and real data. Comparison with standard MSSA, BVAR, VAR and VECM models shows the proposed model outperforms all three models significantly.  相似文献   

2.
    
Conventional wisdom holds that restrictions on low‐frequency dynamics among cointegrated variables should provide more accurate short‐ to medium‐term forecasts than univariate techniques that contain no such information; even though, on standard accuracy measures, the information may not improve long‐term forecasting. But inconclusive empirical evidence is complicated by confusion about an appropriate accuracy criterion and the role of integration and cointegration in forecasting accuracy. We evaluate the short‐ and medium‐term forecasting accuracy of univariate Box–Jenkins type ARIMA techniques that imply only integration against multivariate cointegration models that contain both integration and cointegration for a system of five cointegrated Asian exchange rate time series. We use a rolling‐window technique to make multiple out of sample forecasts from one to forty steps ahead. Relative forecasting accuracy for individual exchange rates appears to be sensitive to the behaviour of the exchange rate series and the forecast horizon length. Over short horizons, ARIMA model forecasts are more accurate for series with moving‐average terms of order >1. ECMs perform better over medium‐term time horizons for series with no moving average terms. The results suggest a need to distinguish between ‘sequential’ and ‘synchronous’ forecasting ability in such comparisons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
    
We examine the potential gains of using exchange rate forecast models and forecast combination methods in the management of currency portfolios for three exchange rates: the euro versus the US dollar, the British pound, and the Japanese yen. We use a battery of econometric specifications to evaluate whether optimal currency portfolios implied by trading strategies based on exchange rate forecasts outperform single currencies and the equally weighted portfolio. We assess the differences in profitability of optimal currency portfolios for different types of investor preferences, two trading strategies, mean squared error‐based composite forecasts, and different forecast horizons. Our results indicate that there are clear benefits of integrating exchange rate forecasts from state‐of‐the‐art econometric models in currency portfolios. These benefits vary across investor preferences and prediction horizons but are rather similar across trading strategies.  相似文献   

4.
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.©1997 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper puts forward a new and simple method to combine forecasts, which is particularly useful when the forecasts are strongly correlated. It is based on the Mincer Zarnowitz regression, and a subsequent determination using Shapley values of the weights of the forecasts in a new combination. For a stylized case, it is proved that such a Shapley-value-based combination improves upon an equal-weight combination. Simulation experiments and a detailed illustration show the merits of the Shapley-value-based forecast combination.  相似文献   

6.
Recent research suggests that non-linear methods cannot improve the point forecasts of high-frequency exchange rates. These studies have been using standard forecasting criteria such as smallest mean squared error (MSE) and smallest mean absolute error (MAE). It is, however, premature to conclude from this evidence that non-linear forecasts of high-frequency financial returns are economically or statistically insignificant. We prove a proposition which implies that the standard forecasting criteria are not necessarily particularly suited for assessment of the economic value of predictions of non-linear processes where the predicted value and the prediction error may not be independently distributed. Adopting a simple non-linear forecasting procedure to 15 daily exchange rate series we find that although, when compared to simple random walk forecasts, all the non-linear forecasts give a higher MSE and MAE, when applied in a simple trading strategy these forecasts result in a higher mean return. It is also shown that the ranking of portfolio payoffs based on forecasts from a random walk, and linear and non-linear models, is closely related to a non-parametric test of market timing.  相似文献   

7.
Forecast regions are a common way to summarize forecast accuracy. They usually consist of an interval symmetric about the forecast mean. However, symmetric intervals may not be appropriate forecast regions when the forecast density is not symmetric and unimodal. With many modern time series models, such as those which are non-linear or have non-normal errors, the forecast densities are often asymmetric or multimodal. The problem of obtaining forecast regions in such cases is considered and it is proposed that highest-density forecast regions be used. A graphical method for presenting the results is discussed.  相似文献   

8.
This study addresses for the first time systematic evaluation of a widely used class of forecasts, regional economic forecasts. Ex ante regional structural equation model forecasts are analysed for 19 metropolitan areas. One- to ten-quarter-ahead forecasts are considered and the seven-year sample spans a complete business cycle. Counter to previous speculation in the literature, (1) dependency on macroeconomic forecasting model inputs does not substantially erode accuracy relative to univariate extrapolative methodologies and (2) stochastic time series models do not on average, yield more accurate regional economic predictions than structural models. Similar to findings in other studies, clear preferences among extrapolative methodologies do not emerge. Most general conclusions, however, are subject to caveats based on step-length effects and region-specific effects.  相似文献   

9.
以A省及17个地市约七年间的销售面板数据为研究对象,首先建立三个单项预测模型,即Hoher—Winter季节乘积模型、时间序列分解法模型和偏最小二乘回归模型。在得到三个单项模型预测值之后,再运用组合模型方法,对三种模型的预测结果进行优化。实证结果显示,本组合预测方法更进一步的提高了预测精度,同时对卷烟销量预测实际工作具有借鉴意义。  相似文献   

10.
    
In this study building on earlier work on the properties and performance of the univariate Theta method for a unit root data‐generating process we: (a) derive new theoretical formulations for the application of the method on multivariate time series; (b) investigate the conditions for which the multivariate Theta method is expected to forecast better than the univariate one; (c) evaluate through simulations the bivariate form of the method; and (d) evaluate this latter model in real macroeconomic and financial time series. The study provides sufficient empirical evidence to illustrate the suitability of the method for vector forecasting; furthermore it provides the motivation for further investigation of the multivariate Theta method for higher dimensions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
A rapidly growing literature emphasizes the importance of evaluating the forecast accuracy of empirical models on the basis of density (as opposed to point) forecasting performance. We propose a test statistic for the null hypothesis that two competing models have equal density forecast accuracy. Monte Carlo simulations suggest that the test, which has a known limiting distribution, displays satisfactory size and power properties. The use of the test is illustrated with an application to exchange rate forecasting. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
    
This paper studies the performance of GARCH model and its modifications, using the rate of returns from the daily stock market indices of the Kuala Lumpur Stock Exchange (KLSE) including Composite Index, Tins Index, Plantations Index, Properties Index, and Finance Index. The models are stationary GARCH, unconstrained GARCH, non‐negative GARCH, GARCH‐M, exponential GARCH and integrated GARCH. The parameters of these models and variance processes are estimated jointly using the maximum likelihood method. The performance of the within‐sample estimation is diagnosed using several goodness‐of‐fit statistics. We observed that, among the models, even though exponential GARCH is not the best model in the goodness‐of‐fit statistics, it performs best in describing the often‐observed skewness in stock market indices and in out‐of‐sample (one‐step‐ahead) forecasting. The integrated GARCH, on the other hand, is the poorest model in both respects. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
    
In this paper, we put dynamic stochastic general equilibrium DSGE forecasts in competition with factor forecasts. We focus on these two models since they represent nicely the two opposing forecasting philosophies. The DSGE model on the one hand has a strong theoretical economic background; the factor model on the other hand is mainly data‐driven. We show that incorporating a large information set using factor analysis can indeed improve the short‐horizon predictive ability, as claimed by many researchers. The micro‐founded DSGE model can provide reasonable forecasts for US inflation, especially with growing forecast horizons. To a certain extent, our results are consistent with the prevailing view that simple time series models should be used in short‐horizon forecasting and structural models should be used in long‐horizon forecasting. Our paper compares both state‐of‐the‐art data‐driven and theory‐based modelling in a rigorous manner. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present a comparison between the forecasting performances of the normalization and variance stabilization method (NoVaS) and the GARCH(1,1), EGARCH(1,1) and GJR‐GARCH(1,1) models. Hence the aim of this study is to compare the out‐of‐sample forecasting performances of the models used throughout the study and to show that the NoVaS method is better than GARCH(1,1)‐type models in the context of out‐of sample forecasting performance. We study the out‐of‐sample forecasting performances of GARCH(1,1)‐type models and NoVaS method based on generalized error distribution, unlike normal and Student's t‐distribution. Also, what makes the study different is the use of the return series, calculated logarithmically and arithmetically in terms of forecasting performance. For comparing the out‐of‐sample forecasting performances, we focused on different datasets, such as S&P 500, logarithmic and arithmetic B?ST 100 return series. The key result of our analysis is that the NoVaS method performs better out‐of‐sample forecasting performance than GARCH(1,1)‐type models. The result can offer useful guidance in model building for out‐of‐sample forecasting purposes, aimed at improving forecasting accuracy.  相似文献   

15.
    
In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.  相似文献   

16.
    
There is growing interest in exploring potential forecast gains from the nonlinear structure of multivariate threshold autoregressive (MTAR) models. A least squares‐based statistical test has been proposed in the literature. However, previous studies on univariate time series analysis show that classical nonlinearity tests are often not robust to additive outliers. The outlier problem is expected to pose similar difficulties for multivariate nonlinearity tests. In this paper, we propose a new and robust MTAR‐type nonlinearity test, and derive the asymptotic null distribution of the test statistic. A Monte Carlo experiment is carried out to compare the power of the proposed test with that of the least squares‐based test under the influence of additive time series outliers. The results indicate that the proposed method is preferable to the classical test when observations are contaminated by outliers. Finally, we provide illustrative examples by applying the statistical tests to two real datasets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Although both direct multi‐step‐ahead forecasting and iterated one‐step‐ahead forecasting are two popular methods for predicting future values of a time series, it is not clear that the direct method is superior in practice, even though from a theoretical perspective it has lower mean squared error (MSE). A given model can be fitted according to either a multi‐step or a one‐step forecast error criterion, and we show here that discrepancies in performance between direct and iterative forecasting arise chiefly from the method of fitting, and is dictated by the nuances of the model's misspecification. We derive new formulas for quantifying iterative forecast MSE, and present a new approach for assessing asymptotic forecast MSE. Finally, the direct and iterative methods are compared on a retail series, which illustrates the strengths and weaknesses of each approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
    
We decompose economic uncertainty into \"good\" and \"bad\" components according to the sign of innovations. Our results indicate that bad uncertainty provides stronger predictive content regarding future market volatility than good uncertainty. The asymmetric models with good and bad uncertainties forecast market volatility in a better way than the symmetric models with overall uncertainty. The combination for asymmetric uncertainty models significantly outperforms the benchmark of autoregression, as well as the combination for symmetric models. The revealed volatility predictability is further demonstrated to be economically significant in the framework of portfolio allocation.  相似文献   

19.
    
The linear multiregression dynamic model (LMDM) is a Bayesian dynamic model which preserves any conditional independence and causal structure across a multivariate time series. The conditional independence structure is used to model the multivariate series by separate (conditional) univariate dynamic linear models, where each series has contemporaneous variables as regressors in its model. Calculating the forecast covariance matrix (which is required for calculating forecast variances in the LMDM) is not always straightforward in its current formulation. In this paper we introduce a simple algebraic form for calculating LMDM forecast covariances. Calculation of the covariance between model regression components can also be useful and we shall present a simple algebraic method for calculating these component covariances. In the LMDM formulation, certain pairs of series are constrained to have zero forecast covariance. We shall also introduce a possible method to relax this restriction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
System-based combination weights for series r/step-length h incorporate relative accuracy information from other forecast step-lengths for r and from other series for step-length h. Such weights are examined utilizing the West and Fullerton (1996) data set-4275 ex ante employment forecasts from structural simultaneous equation econometric models for 19 metropolitan areas at 10 quarterly step-lengths and a parallel set of 4275 ARIMA forecasts. The system-based weights yielded combined forecasts of higher average accuracy and lower risk of large inaccuracy than seven alternative strategies: (1) averaging; (2) relative MSE weights; (3) outperformance (per cent best) weights; (4) Bates and Granger (1969) optimal weights with a convexity constraint imposed; (5) unconstrained optimal weights; (6) select a ‘best’ method (ex ante) by series and; (7) experiment in the Bischoff (1989) sense and select either method (2) or (6) based on the outcome of e experiment. Accuracy gains of the system-based combination were concentrated at step-lengths two to five. Although alternative (5) was generally outperformed, none of the six other alternatives was systematically most accurate when evaluated relative to each other. This contrasts with Bischoff's (1989) results that held promise for an empirically applicable guideline to determine whether or not to combine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号