首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of enterprise growth, core business transformation is an eternal theme. Enterprise risk forecasting is always an important concern for stakeholders. Considering the completeness and accuracy of the information in the early‐warning index, this paper presents a new risk‐forecasting method for enterprises to use for core business transformation by using rough set theory and an artificial neural network. First, continuous attribute values are discretized using the fuzzy clustering algorithm based on the maximum discernibility value function and information entropy. Afterwards, the major attributes are reduced by the rough sets. The core business transformation risk rank judgement is extracted to define the connection between network nodes and determine the structure of the neural networks. Finally, the improved back‐propagation (BP) neural network learning and training are used to judge the risk level of the test samples. The experiments are based on 265 listed companies in China, and the results show that the proposed risk‐forecasting model based on rough sets and the neural network provides higher prediction accuracy rates than do other widely developed baselines including logistic regression, neural networks and association rules mining. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
针对超短期风电功率预测问题,考虑了风电场复杂的噪声背景和风电功率的波动性,提出了一种基于小波阀值降噪-BP神经网络的超短期风电功率预测方法。该方法采用近似对称光滑的紧支撑双正交小波db4(Daubechies函数)作为小波基,通过多分辨分析的Mallat算法对历史时序风电功率数据进行3尺度分解。根据Donoho阀值法对各层小波系数进行软阀值降噪处理,再通过小波逆变换重构历史时序风电功率,由BP神经网络对其进行训练,预测目的风电功率序列。仿真算例将该方法与普通BP神经网络方法进行了对比,比较结果证明其预测精度优于后者,具有很好鲁棒性和降噪性能,适用噪声复杂的风电场超短期风电功率在赣预测.  相似文献   

3.
FBP和FCNN网络是模式识别中应用最为广泛的两种神经网络,本文将这两种网络应用于车型识别,分别建立了车型识别模型。利用混沌对初值的极端敏感依赖提出了FCNN网络算法,通过对车型图像数据库进行仿真实验,对比分析它们各自的识别率和泛化能力等性能指标,证明了FCNN网络算法的有效性。  相似文献   

4.
在利用风速时间序列具有混沌特性的前提下,将相空间重构和RBF神经网络结合的混合算法用于风电场风速预测。通过实例仿真计算对比表明,该混沌-RBF神经网络的混合算法可以进一步提高预测准确度。  相似文献   

5.
This article presents a novel neural network?based approach to the intra?day forecasting of call arrivals in call centres. We apply the method to individual time series of arrivals for different customer call groups. To train the model, we use historical call data from three months and, for each day, we aggregate the call volume in 288 intervals of 5 minutes. With these data, our method can be used for predicting the call volume in the next 5?minute interval using either previous real data or previous predictions to iteratively produce multi?step?ahead forecasts. We compare our approach with other conventional forecasting techniques. Experimental results provide factual evidence in favour of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper discusses techniques that might be helpful in predicting interest rates and tries to evaluate a new hybrid forecasting approach. Results of examining government bond yields in Germany and France reported in this study indicate that a hybrid forecasting approach which combines techniques of cointegration analysis with neural network (NN) forecasting models can produce superior results to the use of NN forecasting models alone. The findings documented in this paper could be a consequence of the fact that examining differenced data under certain conditions will lead to a loss of information and that the inclusion of the error correction term from the cointegration model can help to cope with this problem. The paper also discusses some possibly interesting directions for further research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
为了解决聚类分析中聚类数的确定问题,在SOFM神经网络的基础上,从聚类准则出发,通过试验对聚类准则的曲线特征进行了详细的分析和论证,设计出一种结构自适应的聚类神经网络,该网络能自动确定最佳的聚类数,并提出了一种减少计算量的改进算法。  相似文献   

8.
考虑BP网络存在收敛速度慢、局部极值等缺点,引入线性下降惯性权重粒子群优化(LWPSO)算法,建立基于线性下降惯性权重粒子群优化(LWPSO)算法的人工神经网络模型,在分析抚顺发电有限责任公司厂区地表下沉的实际观测资料的基础上,对厂区的任意点,任意时刻进沉陷预测研究。  相似文献   

9.
Based on the concept of ‘decomposition and ensemble’, a novel ensemble forecasting approach is proposed for complex time series by coupling sparse representation (SR) and feedforward neural network (FNN), i.e. the SR‐based FNN approach. Three main steps are involved: data decomposition via SR, individual forecasting via FNN and ensemble forecasting via a simple addition method. In particular, to capture various coexisting hidden factors, the effective decomposition tool of SR with its unique virtues of flexibility and generalization is introduced to formulate an overcomplete dictionary covering diverse bases, e.g. exponential basis for main trend, Fourier basis for cyclical (and seasonal) features and wavelet basis for transient actions, different from other techniques with a single basis. Using crude oil price (a typical complex time series) as sample data, the empirical study statistically confirms the superiority of the SR‐based FNN method over some other popular forecasting models and similar ensemble models (with other decomposition tools). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we examine the use of non‐parametric Neural Network Regression (NNR) and Recurrent Neural Network (RNN) regression models for forecasting and trading currency volatility, with an application to the GBP/USD and USD/JPY exchange rates. Both the results of the NNR and RNN models are benchmarked against the simpler GARCH alternative and implied volatility. Two simple model combinations are also analysed. The intuitively appealing idea of developing a nonlinear nonparametric approach to forecast FX volatility, identify mispriced options and subsequently develop a trading strategy based upon this process is implemented for the first time on a comprehensive basis. Using daily data from December 1993 through April 1999, we develop alternative FX volatility forecasting models. These models are then tested out‐of‐sample over the period April 1999–May 2000, not only in terms of forecasting accuracy, but also in terms of trading efficiency: in order to do so, we apply a realistic volatility trading strategy using FX option straddles once mispriced options have been identified. Allowing for transaction costs, most trading strategies retained produce positive returns. RNN models appear as the best single modelling approach yet, somewhat surprisingly, model combination which has the best overall performance in terms of forecasting accuracy, fails to improve the RNN‐based volatility trading results. Another conclusion from our results is that, for the period and currencies considered, the currency option market was inefficient and/or the pricing formulae applied by market participants were inadequate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
We employ 47 different algorithms to forecast Australian log real house prices and growth rates, and compare their ability to produce accurate out-of-sample predictions. The algorithms, which are specified in both single- and multi-equation frameworks, consist of traditional time series models, machine learning (ML) procedures, and deep learning neural networks. A method is adopted to compute iterated multistep forecasts from nonlinear ML specifications. While the rankings of forecast accuracy depend on the length of the forecast horizon, as well as on the choice of the dependent variable (log price or growth rate), a few generalizations can be made. For one- and two-quarter-ahead forecasts we find a large number of algorithms that outperform the random walk with drift benchmark. We also report several such outperformances at longer horizons of four and eight quarters, although these are not statistically significant at any conventional level. Six of the eight top forecasts (4 horizons × 2 dependent variables) are generated by the same algorithm, namely a linear support vector regressor (SVR). The other two highest ranked forecasts are produced as simple mean forecast combinations. Linear autoregressive moving average and vector autoregression models produce accurate olne-quarter-ahead predictions, while forecasts generated by deep learning nets rank well across medium and long forecast horizons.  相似文献   

12.
Neural networks (NNs) are appropriate to use in time series analysis under conditions of unfulfilled assumptions, i.e., non‐normality and nonlinearity. The aim of this paper is to propose means of addressing identified shortcomings with the objective of identifying the NN structure for inflation forecasting. The research is based on a theoretical model that includes the characteristics of demand‐pull and cost‐push inflation; i.e., it uses the labor market, financial and external factors, and lagged inflation variables. It is conducted at the aggregate level of euro area countries from January 1999 to January 2017. Based on the estimated 90 feedforward NNs (FNNs) and 450 Jordan NNs (JNNs), which differ in variable parameters (number of iterations, learning rate, initial weight value intervals, number of hidden neurons, and weight value of the context unit), the mean square error (MSE), and the Akaike Information Criterion (AIC) are calculated for two periods: in‐the‐sample and out‐of‐sample. Ranking NNs simultaneously on both periods according to either MSE or AIC does not lead to the selection of the ‘best’ NN because the optimal NN in‐the‐sample, based on MSE and/or AIC criteria, often has high out‐of‐sample values of both indicators. To achieve the best compromise solution, i.e., to select an optimal NN, the preference ranking organization method for enrichment of evaluations (PROMETHEE) is used. Comparing the optimal FNN and JNN, i.e., FNN(4,5,1) and JNN(4,3,1), it is concluded that under approximately equal conditions, fewer hidden layer neurons are required in JNN than in FNN, confirming that JNN is parsimonious compared to FNN. Moreover, JNN has a better forecasting performance than FNN.  相似文献   

13.
为提高传统非线性预测模型的预测精度,提出一种基于改进果蝇优化算法优化广义回归神经网络的预测方法,将果蝇群体分两部分分别进行迭代寻优,从而改进了果蝇优化算法的寻优性能,进而避免了在寻优过程中陷入局部最优。该方法利用改进果蝇优化算法优化广义回归神经网络的径向基函数扩展参数,然后用训练好的广义回归神经网络预测模型进行预测,最后通过订单预测算例进行实证研究。实证研究结果显示,该方法在解决订单预测问题中与未改进的果蝇优化算法优化广义回归神经网络和传统的广义回归神经网络方法对比,具有更高的预测精度和更好的非线性拟合能力。  相似文献   

14.
In this paper we show that optimal trading results can be achieved if we can forecast a key summary statistic of future prices. Consider the following optimization problem. Let the return ri (over time i=1, 2, ..., n) for the ith day be given and the investor has to make investment decision di on the ith day with di=1 representing a ‘long' position and di=0 a ‘neutral' position. The investment return is given by rni=1ridicΣn+1i=1didi−1∣, where c is the transaction cost. The mathematical programming problem of choosing d1, ..., dn to maximize r under a given transaction cost c is shown to have an analytic solution, which is a function of a key summary statistic called the largest change before reversal. The largest change before reversal is recommended to be used as an output in a neural network for the generation of trading signals. When neural network forecasting is applied to a dataset of Hang Seng Index Futures Contract traded in Hong Kong, it is shown that forecasting the largest change before reversal outperforms the k‐step‐ahead forecast in achieving higher trading profits. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
We studied the predictability of intraday stock market returns using both linear and nonlinear time series models. For the S&P 500 index we compared simple autoregressive and random walk linear models with a range of nonlinear models, including smooth transition, Markov switching, artificial neural network, nonparametric kernel regression and support vector machine models for horizons of 5, 10, 20, 30 and 60 minutes. The empirical results indicate that nonlinear models outperformed linear models on the basis of both statistical and economic criteria. Specifically, although return serial correlation receded by around 10 minutes, return predictability still persisted for up to 60 minutes according to nonlinear models, even though profitability decreases as time elapses. More flexible nonlinear models such as support vector machines and artificial neural network did not clearly outperform other nonlinear models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we present two neural‐network‐based techniques: an adaptive evolutionary multilayer perceptron (aDEMLP) and an adaptive evolutionary wavelet neural network (aDEWNN). The two models are applied to the task of forecasting and trading the SPDR Dow Jones Industrial Average (DIA), the iShares NYSE Composite Index Fund (NYC) and the SPDR S&P 500 (SPY) exchange‐traded funds (ETFs). We benchmark their performance against two traditional MLP and WNN architectures, a smooth transition autoregressive model (STAR), a moving average convergence/divergence model (MACD) and a random walk model. We show that the proposed architectures present superior forecasting and trading performance compared to the benchmarks and are free from the limitations of the traditional neural networks such as the data‐snooping bias and the time‐consuming and biased processes involved in optimizing their parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
As a consequence of recent technological advances and the proliferation of algorithmic and high‐frequency trading, the cost of trading in financial markets has irrevocably changed. One important change, known as price impact, relates to how trading affects prices. Price impact represents the largest cost associated with trading. Forecasting price impact is very important as it can provide estimates of trading profits after costs and also suggest optimal execution strategies. Although several models have recently been developed which may forecast the immediate price impact of individual trades, limited work has been done to compare their relative performance. We provide a comprehensive performance evaluation of these models and test for statistically significant outperformance amongst candidate models using out‐of‐sample forecasts. We find that normalizing price impact by its average value significantly enhances the performance of traditional non‐normalized models as the normalization factor captures some of the dynamics of price impact. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
本文基于神经网络L-M优化算法,提出一种时EV71病毒的有效预测模型,利用matlab进行仿真模拟,结果和阜阳病毒感染情况非常符合.神经网络L-M优化算法克服了神经网络BP算法收敛速度慢的缺点,同时通过学习训练,本模型的神经系统具有有效性和通用性的特点.  相似文献   

19.
In this paper we apply cointegration and Granger-causality analyses to construct linear and neural network error-correction models for an Austrian Initial Public Offerings IndeX (IPOXATX). We use the significant relationship between the IPOXATX and the Austrian Stock Market Index ATX to forecast the IPOXATX. For prediction purposes we apply augmented feedforward neural networks whose architecture is determined by Sequential Network Construction with the Schwartz Information Criterion as an estimator for the prediction risk. Trading based on the forecasts yields results superior to Buy and Hold or Moving Average trading strategies in terms of mean-variance considerations.  相似文献   

20.
We propose a wavelet neural network (neuro‐wavelet) model for the short‐term forecast of stock returns from high‐frequency financial data. The proposed hybrid model combines the capability of wavelets and neural networks to capture non‐stationary nonlinear attributes embedded in financial time series. A comparison study was performed on the predictive power of two econometric models and four recurrent neural network topologies. Several statistical measures were applied to the predictions and standard errors to evaluate the performance of all models. A Jordan net that used as input the coefficients resulting from a non‐decimated wavelet‐based multi‐resolution decomposition of an exogenous signal showed a consistent superior forecasting performance. Reasonable forecasting accuracy for the one‐, three‐ and five step‐ahead horizons was achieved by the proposed model. The procedure used to build the neuro‐wavelet model is reusable and can be applied to any high‐frequency financial series to specify the model characteristics associated with that particular series. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号