首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this paper is twofold. Firstly, to assess the merit of estimating probability density functions rather than level or classification estimations on a one‐day‐ahead forecasting task of the EUR/USD time series. This is implemented using a Gaussian mixture model neural network, benchmarking the results against standard forecasting models, namely a naïve model, a moving average convergence divergence technical model (MACD), an autoregressive moving average model (ARMA), a logistic regression model (LOGIT) and a multi‐layer perceptron network (MLP). Secondly, to examine the possibilities of improving the trading performance of those models with confirmation filters and leverage. While the benchmark models perform best without confirmation filters and leverage, the Gaussian mixture model outperforms all of the benchmarks when taking advantage of the possibilities offered by a combination of more sophisticated trading strategies and leverage. This might be due to the ability of the Gaussian mixture model to identify successfully trades with a high Sharpe ratio. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The motivation for this paper was the introduction of novel short‐term models to trade the FTSE 100 and DAX 30 exchange‐traded funds (ETF) indices. There are major contributions in this paper which include the introduction of an input selection criterion when utilizing an expansive universe of inputs, a hybrid combination of partial swarm optimizer (PSO) with radial basis function (RBF) neural networks, the application of a PSO algorithm to a traditional autoregressive moving model (ARMA), the application of a PSO algorithm to a higher‐order neural network and, finally, the introduction of a multi‐objective algorithm to optimize statistical and trading performance when trading an index. All the machine learning‐based methodologies and the conventional models are adapted and optimized to model the index. A PSO algorithm is used to optimize the weights in a traditional RBF neural network, in a higher‐order neural network (HONN) and the AR and MA terms of an ARMA model. In terms of checking the statistical and empirical accuracy of the novel models, we benchmark them with a traditional HONN, with an ARMA, with a moving average convergence/divergence model (MACD) and with a naïve strategy. More specifically, the trading and statistical performance of all models is investigated in a forecast simulation of the FTSE 100 and DAX 30 ETF time series over the period January 2004 to December 2015 using the last 3 years for out‐of‐sample testing. Finally, the empirical and statistical results indicate that the PSO‐RBF model outperforms all other examined models in terms of trading accuracy and profitability, even with mixed inputs and with only autoregressive inputs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In the last decade, neural networks have emerged from an esoteric instrument in academic research to a rather common tool assisting auditors, investors, portfolio managers and investment advisors in making critical financial decisions. It is apparent that a better understanding of the network's performance and limitations would help both researchers and practitioners in analysing real‐world problems. Unlike many existing studies which focus on a single type of network architecture, this study evaluates and compares the performance of models based on two competing neural network architectures, the multi‐layered feedforward neural network (MLFN) and general regression neural network (GRNN). Our empirical evaluation measures the network models' strength on the prediction of currency exchange correlation with respect to a variety of statistical tests including RMSE, MAE, U statistic, Theil's decomposition test, Henriksson–Merton market timing test and Fair–Shiller informational content test. Results of experiments suggest that the selection of proper architectural design may contribute directly to the success in neural network forecasting. In addition, market timing tests indicate that both MLFN and GRNN models have economically significant values in predicting the exchange rate correlation. On the other hand, informational content tests discover that the neural network models based on different architectures capture useful information not found in each other and the information sets captured by the two network designs are independent of one another. An auxiliary experiment is developed and confirms the possible synergetic effect from combining forecasts made by the two different network architectures and from incorporating information from an implied correlation model into the neural network forecasts. Implied correlation and random walk models are also included in our empirical experiment for benchmark comparison. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
We propose a wavelet neural network (neuro‐wavelet) model for the short‐term forecast of stock returns from high‐frequency financial data. The proposed hybrid model combines the capability of wavelets and neural networks to capture non‐stationary nonlinear attributes embedded in financial time series. A comparison study was performed on the predictive power of two econometric models and four recurrent neural network topologies. Several statistical measures were applied to the predictions and standard errors to evaluate the performance of all models. A Jordan net that used as input the coefficients resulting from a non‐decimated wavelet‐based multi‐resolution decomposition of an exogenous signal showed a consistent superior forecasting performance. Reasonable forecasting accuracy for the one‐, three‐ and five step‐ahead horizons was achieved by the proposed model. The procedure used to build the neuro‐wavelet model is reusable and can be applied to any high‐frequency financial series to specify the model characteristics associated with that particular series. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we present an intelligent decision‐support system based on neural network technology for model selection and forecasting. While most of the literature on the application of neural networks in forecasting addresses the use of neural network technology as an alternative forecasting tool, limited research has focused on its use for selection of forecasting methods based on time‐series characteristics. In this research, a neural network‐based decision support system is presented as a method for forecast model selection. The neural network approach provides a framework for directly incorporating time‐series characteristics into the model‐selection phase. Using a neural network, a forecasting group is initially selected for a given data set, based on a set of time‐series characteristics. Then, using an additional neural network, a specific forecasting method is selected from a pool of three candidate methods. The results of training and testing of the networks are presented along with conclusions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, support vector machine (SVM), a novel artificial neural network (ANN), has been successfully used for financial forecasting. This paper deals with the application of SVM in volatility forecasting under the GARCH framework, the performance of which is compared with simple moving average, standard GARCH, nonlinear EGARCH and traditional ANN‐GARCH models by using two evaluation measures and robust Diebold–Mariano tests. The real data used in this study are daily GBP exchange rates and NYSE composite index. Empirical results from both simulation and real data reveal that, under a recursive forecasting scheme, SVM‐GARCH models significantly outperform the competing models in most situations of one‐period‐ahead volatility forecasting, which confirms the theoretical advantage of SVM. The standard GARCH model also performs well in the case of normality and large sample size, while EGARCH model is good at forecasting volatility under the high skewed distribution. The sensitivity analysis to choose SVM parameters and cross‐validation to determine the stopping point of the recurrent SVM procedure are also examined in this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
为提高传统非线性预测模型的预测精度,提出一种基于改进果蝇优化算法优化广义回归神经网络的预测方法,将果蝇群体分两部分分别进行迭代寻优,从而改进了果蝇优化算法的寻优性能,进而避免了在寻优过程中陷入局部最优。该方法利用改进果蝇优化算法优化广义回归神经网络的径向基函数扩展参数,然后用训练好的广义回归神经网络预测模型进行预测,最后通过订单预测算例进行实证研究。实证研究结果显示,该方法在解决订单预测问题中与未改进的果蝇优化算法优化广义回归神经网络和传统的广义回归神经网络方法对比,具有更高的预测精度和更好的非线性拟合能力。  相似文献   

8.
Following recent non‐linear extensions of the present‐value model, this paper examines the out‐of‐sample forecast performance of two parametric and two non‐parametric nonlinear models of stock returns. The parametric models include the standard regime switching and the Markov regime switching, whereas the non‐parametric are the nearest‐neighbour and the artificial neural network models. We focused on the US stock market using annual observations spanning the period 1872–1999. Evaluation of forecasts was based on two criteria, namely forecast accuracy and forecast encompassing. In terms of accuracy, the Markov and the artificial neural network models produce at least as accurate forecasts as the other models. In terms of encompassing, the Markov model outperforms all the others. Overall, both criteria suggest that the Markov regime switching model is the most preferable non‐linear empirical extension of the present‐value model for out‐of‐sample stock return forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Artificial neural network modelling has recently attracted much attention as a new technique for estimation and forecasting in economics and finance. The chief advantages of this new approach are that such models can usually find a solution for very complex problems, and that they are free from the assumption of linearity that is often adopted to make the traditional methods tractable. In this paper we compare the performance of Back‐Propagation Artificial Neural Network (BPN) models with the traditional econometric approaches to forecasting the inflation rate. Of the traditional econometric models we use a structural reduced‐form model, an ARIMA model, a vector autoregressive model, and a Bayesian vector autoregression model. We compare each econometric model with a hybrid BPN model which uses the same set of variables. Dynamic forecasts are compared for three different horizons: one, three and twelve months ahead. Root mean squared errors and mean absolute errors are used to compare quality of forecasts. The results show the hybrid BPN models are able to forecast as well as all the traditional econometric methods, and to outperform them in some cases. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, new variants of genetic programming (GP), namely gene expression programming (GEP) and multi‐expression programming (MEP), are utilized to build models for bankruptcy prediction. Generalized relationships are obtained to classify samples of 136 bankrupt and non‐bankrupt Iranian corporations based on their financial ratios. An important contribution of this paper is to identify the effective predictive financial ratios on the basis of an extensive bankruptcy prediction literature review and upon a sequential feature selection analysis. The predictive performance of the GEP and MEP forecasting methods is compared with the performance of traditional statistical methods and a generalized regression neural network. The proposed GEP and MEP models are effectively capable of classifying bankrupt and non‐bankrupt firms and outperform the models developed using other methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper an intelligent business forecaster for strategic business planning is presented. The forecaster is basically a multi‐layered fuzzy rule‐based neural network which integrates the basic elements and functions of a traditional fuzzy logic inference into a neural network structure. It has also been shown to be superior to two commercially available business forecasters in terms of learning speed and forecasting accuracy. This paper presents the architectural design of the intelligent business forecaster and the results of a study that has been carried out to compare its performance with that of the others. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The forecasting of prices for electricity balancing reserve power can essentially improve the trading positions of market participants in competitive auctions. Having identified a lack of literature related to forecasting balancing reserve prices, we deploy approaches originating from econometrics and artificial intelligence and set up a forecasting framework based on autoregressive and exogenous factors. We use SARIMAX models as well as neural networks with different structures and forecast based on a rolling one-step forecast with reestimation of the models. It turns out that the naive forecast performs reasonably well but is outperformed by the more advanced models. In addition, neural network approaches outperform the econometric approach in terms of forecast quality, whereas for the further use of the generated models the econometric approach has advantages in terms of explaining price drivers. For the present application, more advanced configurations of the neural networks are not able to further improve the forecasting performance.  相似文献   

13.
This paper proposes an approach that models and forecasts sales through a flexible parametric response function (multifunctional), allowing for differentiated behavioural assumptions of the response determinants to be specified, and uses neural network modelling as a re‐specification tool for the response model in order to improve forecasting performance. An initial experiment on a sample of sales data demonstrates feasibility and gives comparative insights via alternative model specifications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The forecasting capabilities of feed‐forward neural network (FFNN) models are compared to those of other competing time series models by carrying out forecasting experiments. As demonstrated by the detailed forecasting results for the Canadian lynx data set, FFNN models perform very well, especially when the series contains nonlinear and non‐Gaussian characteristics. To compare the forecasting accuracy of a FFNN model with an alternative model, Pitman's test is employed to ascertain if one model forecasts significantly better than another when generating one‐step‐ahead forecasts. Moreover, the residual‐fit spread plot is utilized in a novel fashion in this paper to compare visually out‐of‐sample forecasts of two alternative forecasting models. Finally, forecasting findings on the lynx data are used to explain under what conditions one would expect FFNN models to furnish reliable and accurate forecasts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper estimates two‐state Markov models for three daily exchange rate series, and investigates the profitability of following the generated forecasts using the performance of simple chartist trading rules as benchmarks. It is shown that (1) the data are well approximated by Markov models, (2) the performance of previously profitable trading rules has dramatically declined in the 1990s, and (3) the Markov models are unstable and not suitable for forecasting in their current form. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In the process of enterprise growth, core business transformation is an eternal theme. Enterprise risk forecasting is always an important concern for stakeholders. Considering the completeness and accuracy of the information in the early‐warning index, this paper presents a new risk‐forecasting method for enterprises to use for core business transformation by using rough set theory and an artificial neural network. First, continuous attribute values are discretized using the fuzzy clustering algorithm based on the maximum discernibility value function and information entropy. Afterwards, the major attributes are reduced by the rough sets. The core business transformation risk rank judgement is extracted to define the connection between network nodes and determine the structure of the neural networks. Finally, the improved back‐propagation (BP) neural network learning and training are used to judge the risk level of the test samples. The experiments are based on 265 listed companies in China, and the results show that the proposed risk‐forecasting model based on rough sets and the neural network provides higher prediction accuracy rates than do other widely developed baselines including logistic regression, neural networks and association rules mining. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
More and more ensemble models are used to forecast business failure. It is generally known that the performance of an ensemble relies heavily on the diversity between each base classifier. To achieve diversity, this study uses kernel‐based fuzzy c‐means (KFCM) to organize firm samples and designs a hierarchical selective ensemble model for business failure prediction (BFP). First, three KFCM methods—Gaussian KFCM (GFCM), polynomial KFCM (PFCM), and Hyper‐tangent KFCM (HFCM)—are employed to partition the financial data set into three data sets. A neural network (NN) is then adopted as a basis classifier for BFP, and three sets, which are derived from three KFCM methods, are used to build three classifier pools. Next, classifiers are fused by the two‐layer hierarchical selective ensemble method. In the first layer, classifiers are ranked based on their prediction accuracy. The stepwise forward selection method is employed to selectively integrate classifiers according to their accuracy. In the second layer, three selective ensembles in the first layer are integrated again to acquire the final verdict. This study employs financial data from Chinese listed companies to conduct empirical research, and makes a comparative analysis with other ensemble models and all its component models. It is the conclusion that the two‐layer hierarchical selective ensemble is good at forecasting business failure.  相似文献   

18.
Initial applications of prediction markets (PMs) indicate that they provide good forecasting instruments in many settings, such as elections, the box office, or product sales. One particular characteristic of these ‘first‐generation’ (G1) PMs is that they link the payoff value of a stock's share to the outcome of an event. Recently, ‘second‐generation’ (G2) PMs have introduced alternative mechanisms to determine payoff values which allow them to be used as preference markets for determining preferences for product concepts or as idea markets for generating and evaluating new product ideas. Three different G2 payoff mechanisms appear in the existing literature, but they have never been compared. This study conceptually and empirically compares the forecasting accuracy of the three G2 payoff mechanisms and investigates their influence on participants' trading behavior. We find that G2 payoff mechanisms perform almost as well as their G1 counterpart, and trading behavior is very similar in both markets (i.e. trading prices and trading volume), except during the very last trading hours of the market. These results indicate that G2 PMs are valid instruments and support their applicability shown in previous studies for developing new product ideas or evaluating new product concepts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we examine the use of non‐parametric Neural Network Regression (NNR) and Recurrent Neural Network (RNN) regression models for forecasting and trading currency volatility, with an application to the GBP/USD and USD/JPY exchange rates. Both the results of the NNR and RNN models are benchmarked against the simpler GARCH alternative and implied volatility. Two simple model combinations are also analysed. The intuitively appealing idea of developing a nonlinear nonparametric approach to forecast FX volatility, identify mispriced options and subsequently develop a trading strategy based upon this process is implemented for the first time on a comprehensive basis. Using daily data from December 1993 through April 1999, we develop alternative FX volatility forecasting models. These models are then tested out‐of‐sample over the period April 1999–May 2000, not only in terms of forecasting accuracy, but also in terms of trading efficiency: in order to do so, we apply a realistic volatility trading strategy using FX option straddles once mispriced options have been identified. Allowing for transaction costs, most trading strategies retained produce positive returns. RNN models appear as the best single modelling approach yet, somewhat surprisingly, model combination which has the best overall performance in terms of forecasting accuracy, fails to improve the RNN‐based volatility trading results. Another conclusion from our results is that, for the period and currencies considered, the currency option market was inefficient and/or the pricing formulae applied by market participants were inadequate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Artificial neural network (ANN) combined with signal decomposing methods is effective for long‐term streamflow time series forecasting. ANN is a kind of machine learning method utilized widely for streamflow time series, and which performs well in forecasting nonstationary time series without the need of physical analysis for complex and dynamic hydrological processes. Most studies take multiple factors determining the streamflow as inputs such as rainfall. In this study, a long‐term streamflow forecasting model depending only on the historical streamflow data is proposed. Various preprocessing techniques, including empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and discrete wavelet transform (DWT), are first used to decompose the streamflow time series into simple components with different timescale characteristics, and the relation between these components and the original streamflow at the next time step is analyzed by ANN. Hybrid models EMD‐ANN, EEMD‐ANN and DWT‐ANN are developed in this study for long‐term daily streamflow forecasting, and performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash–Sutcliffe efficiency (NSE) indicate that the proposed EEMD‐ANN method performs better than EMD‐ANN and DWT‐ANN models, especially in high flow forecasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号