共查询到20条相似文献,搜索用时 0 毫秒
1.
在数学教学中,将数学问题系列化,将有效地提高学生解决数学问题的能力。本文利用拉格朗日中值定理和函数单调性证明不等式,加深学生对导数知识的理解,培养学生分析问题和解决问题的能力。 相似文献
2.
不等式是数学的重要内容,证明不等式的方法多种多样,有些不等式用初等方法来证明需要较高的技巧,甚至有时有些不等式根本无法用初等方法来证明.而有时利用高等数学中微积分的有关知识来证明不等式,可以使证明的思路变得简单,技巧性降低.在此总结出三个可直接用于证明不等式的命题,阐述如何利用高等数学中函数的单调性、拉格朗日中值定理、函数的板值与最值、函数凹凸性、泰勒公式、积分中值定理及其性质来证明不等式. 相似文献
3.
4.
拉格朗日中值定理是一个比较重要的微分中值定理,本文通过例题说明如何利用拉格朗日中值定理证明不等式的方法。 相似文献
5.
在数学教学中,将数学问题系列化,将有效地提高学生解决数学问题的能力。本文利用拉格朗日中值定理和函数单调性证明不等式,加深学生对导数知识的理解,培养学生分析问题和解决问题的能力。 相似文献
6.
针对一道不等式的证明题,进行探讨,提出3种证明方法,即可以利用泰勒(Taylor)公式、拉格朗日(Lagrange)中值定理证明和反证法证明,进而培养学员的发散思维. 相似文献
7.
拉格朗日中值定理的简单证明与应用 总被引:1,自引:0,他引:1
毕永青 《河南教育学院学报(自然科学版)》2002,11(3):13-14
本文通过构造函数给出了拉格朗日中值定理的简单证明,以及此定理在微分学中的应用。 相似文献
8.
9.
袁军柱 《宝鸡文理学院学报(自然科学版)》1994,(1):131-132
浅谈微分学中值定理的证明袁军柱微分学中值定理(拉格朗日定理)的证明,通常以罗尔定理作为它的预备定理。证明的关键是在于构造一个辅助函数。电大教材高等数学讲义(邵士敏主编)及常见的各种分析课本都是沿用传统的辅助函数,对于辅助函数是如何构造出来的,教材中未... 相似文献
10.
王小华 《广西民族大学学报》2005,11(3):48-50
函数不等式的证明是比较常见的题型,证明方法很多,介绍几种常用的证明方法,通过这些方法,可以比较简洁、快速的解决一些不等式的证明问题. 相似文献
11.
微分学证明不等式的方法 总被引:1,自引:0,他引:1
不等式在数学中占有很重要的位置,内容也极其丰富;微分学的应用更是渗透到了数学中的各个方面.本文利用微分学这一工具,给出了不等式的一些主要证明方法,并举例说明其应用. 相似文献
12.
13.
对利用微积分的有关知识证明不等式的方法作了初步研究,给出了不等式证明的几种实用有效的方法。 相似文献
14.
王小华 《广西民族大学学报》2005,11(3):48-50
函数不等式的证明是比较常见的题型,证明方法很多,介绍几种常用的证明方法,通过这些方法,可以比较简洁、快速的解决一些不等式的证明问题. 相似文献
15.
16.
微分中值定理是微分学中的基本定理.本文从罗尔中值定理出发,这用行列式理论,不仅证明了拉格朗日中值定理和柯西中值定理,还发现了一些新的结论. 相似文献
17.
微分中值定理是罗尔定理、拉格朗日中值定理、柯西中值定理的统称。是微分学的基本定理,具有广泛的应用性。本文对这三个中值定理之间的关系做了归纳,并通过利用行列式来构造函数,给出了柯西中值定理的一种新的证明方法。这有利于微分中值定理的学习。 相似文献
18.
拉格朗日中值定理是高等数学中一个重要的知识点,是理工科学生考取研究生必考的内容,本文从几何意义、微分方程构造法、行列式构造法等四个角度证明拉格朗日中值定理,将高等数学、线性代数、微分方程知识结合起来,拓展学生思维,为进一步学习奠定基础. 相似文献
19.
20.