共查询到19条相似文献,搜索用时 62 毫秒
1.
黄少荣 《重庆师范学院学报》2013,(6):123-127
粒子群优化算法本质上是一种全局随机优化技术,优化性能高但容易陷于局部最优,并且算法性能很大程度上依赖于参数设置。本文对该算法的3个控制参数进行数据实验和调查,分析参数设置对算法性能的影响规律,提出一种改进的粒子群优化算法,该算法在迭代的每一代中,惯性权重和加速系数都是在一定范围内随机产生:ω=rand(0.4,0.7),C1=rand(0.5,3.0),C2=rand(1,3.5)。由于该算法的控制参数不再固定取值;而且在一定范围内随机产生,从而增强了算法的多样性和遍历性,能够有效避免算法早熟收敛。通过标准函数的测试,验证了该算法性能优于固定参数粒子群算法和随机加速系数粒子群算法,具有更好的收敛性和稳定性。 相似文献
2.
采用混沌粒子群优化算法的水质模型参数辨识 总被引:2,自引:0,他引:2
提出了一种新的适用于水质模型参数辨识的混沌粒子群优化(LCPSO)算法.与粒子群优化(PSO)算法相比,该算法将Logistic混沌搜索嵌入到PSO算法中,利用混沌变量产生初始粒群,并对子代部分粒子群体进行微小扰动,随着搜索过程的深入逐步调整扰动幅度,以克服PSO算法的早熟、易陷入局部极值等固有缺陷.采用标准测试函数,将该算法与遗传算法(GA)和PSO算法进行比较,证明了其收敛速度和寻优能力的优越性.采用实测水质数据,将LCPSO算法应用于具有一定工程价值和复杂程度的Dobbins-Camp BOD-DO水质模型的参数辨识.结果显示,所得水质数据与实测值误差平方和仅为0.150 3,且相对误差在±0.2%范围内,故该算法可为水质模型的参数辨识提供一条新的途径. 相似文献
3.
4.
粒子群算法是一种新型的智能优化技术,该算法程序实现简单,可调整的参数少。本文针对粒子群优化算法易早熟收敛陷入局部极值的事实,对粒子群优化算法的惯性权重进行适当改进,数值仿真结果说明该算法是非常有效的。 相似文献
5.
粒子群算法惯性权重的研究 总被引:1,自引:0,他引:1
唐忠 《广西大学学报(自然科学版)》2009,34(5)
粒子群算法惯性权重ω的设置其极重要,直接影响算法性能.本文利用云发生器对惯性权重进行调整,对其取值范嗣做了进一步的研究,并应用于粒子群算法的改进.以高维函数优化为实例,实验仿真结果表明,新算法的全局搜索能力、收敛速度,精度和稳定性均有了显著提高. 相似文献
6.
系统辨识的粒子群优化方法 总被引:7,自引:2,他引:7
研究了一种基于粒子群优化算法对系统进行辨识的新方法.该方法的基本思想是将典型数学模型相互组合而构成系统模型,即首先将系统结构辨识问题转化为组合优化问题,然后利用粒子群优化算法同时实现系统的结构辨识与参数辨识.为了进一步提高粒子群优化算法的辨识性能,提出了一种改进的粒子群优化算法.仿真结果表明,给出的辨识算法是合理的,虽然扰动对算法的性能以及辨识结果有一定的影响,但利用文中所提出的改进粒子群优化算法仍然可以理想地辨识出系统的结构以及模型的参数,且与已有辨识算法相比更加有效. 相似文献
7.
8.
粒子群算法的参数分析 总被引:1,自引:0,他引:1
《科技信息》2008,(14)
粒子群算法是一类基于迭代的随机全局优化技术,因思想简单而应用广泛,但在参数选择及理论分析方面的研究成果比较分散。本文通过对粒子群算法的主要参数进行分析和总结,给出了阶段性的综述。 相似文献
9.
针对标准粒子群优化(PSO)算法存在易早熟收敛的缺点,提出了一种基于天体系统模型的粒子群优化算法(CSPSO).在CSPSO算法中,参照天文学中的天体系统模型,将种群划分为多个相对独立的天体系统,每个系统按照自己的运行规则在不同的空间中运行,在算法的后期引入混沌优化,最终确定出优化问题的全局最优解.将CSPSO算法应用于异步电机参数辨识问题中,仿真结果表明CSPSO算法比GA算法和PSO算法具有更精确的参数辨识能力. 相似文献
10.
简化的自适应粒子群优化算法 总被引:2,自引:0,他引:2
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。 相似文献
11.
一种动态非线性改变惯性权的自适应粒子群优化算法 总被引:1,自引:0,他引:1
惯性权值线性递减(LDI)的粒子群算法不能很好地反映粒子搜索过程的复杂非线性行为,收敛速度和收敛精度仍不够理想。对此,提出一种动态非线性改变惯性权(DNI)的自适应粒子群算法。在该算法中通过引入非线性指数函数来描述惯性权值在进化过程中的动态变化特性,并通过数值实验确定了非线性函数关键控制参数的合适取值范围。通过典型测试函数验证算法的性能,并与文献报道的已有结果比较。实验表明:对单峰值函数优化问题,DNI自适应粒子群算法收敛速度明显优于LDI算法;对多峰值函数优化问题,DNI算法跳出局部最优的能力及收敛精度也好于LDI算法。 相似文献
12.
差分进化算法是一种新兴的优化算法,与最小二乘法等梯度类算法相比,它能够进行全局寻优且对初值不敏感,具有广泛的应用前景.建立某型飞机刚体运动的6自由度非线性动力学模型,在叠加一定比例白噪声的情况下获得其仿真数据,使用差分进化算法辨识出该型飞机的纵向运动气动力参数,辨识结果与真实值较为吻合,证明该算法是可行的.多组试验表明:对于该型飞机的动力学模型和仿真数据,使用差分进化算法的辨识结果与使用最小二乘法、普通粒子群算法的辨识结果相比,具有更高的精度和更强的鲁棒性. 相似文献
13.
基于改进PSO算法的岩石蠕变模型参数辨识 总被引:2,自引:0,他引:2
微粒群优化(PSO)算法是一类随机全局优化技术,具有收敛速度快、规则简单、易于实现的优点.针对岩石蠕变本构模型参数的辨识问题,本文利用FLAC软件自带的fish语言实现了改进PSO算法对本构模型参数的辨识.该方法从岩石本构模型参数的随机值出发,以蠕变过程中试件变形的实验值与计算值的误差大小作为适应度函数来评价参数的品质,利用改进PSO算法规则实现模型参数的进化,搜索出全局最优的模型参数值,从而实现了岩石蠕变本构模型参数的自适应辨识.利用该方法对页岩蠕变实验进行了仿真研究,实验结果表明:改进的PSO算法用于岩石蠕变模型的参数辨识是有效的. 相似文献
14.
安鹏 《吉林大学学报(理学版)》2015,53(6):1223-1228
针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值的概率.通过在多个常用测试函数上与其他算法比较,证明了所提改进粒子群算法的正确性和有效性. 相似文献
15.
一种动态惯性权重的自适应粒子群优化算法 总被引:1,自引:0,他引:1
在标准粒子群算法中,权重过大导致最优点的搜寻能力降低,不能适应复杂的非线性优化搜索过程,动态惯性权重的自适应粒子群算法(APSO)解决了这一问题。在该算法中,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性。通过对几种典型函数的测试结果表明,APSO算法的收敛速度和收敛精度明显优于LDW算法,从而提高了算法的性能。 相似文献
16.
一种动态改变惯性权的自适应粒子群算法 总被引:41,自引:2,他引:41
针对惯性权值线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权的自适应粒子群算法(DCW).在该算法中引入了参数粒子群进化速度因子和聚集度因子,并根据这2个参数对粒子群算法搜索能力的影响,将惯性因子表示为粒子群进化速度因子和聚集度因子的函数.在每次迭代时算法可根据当前粒子群进化速度因子和聚集度因子动态地改变惯性权值,从而使算法具有动态自适应性.对几种典型函数的测试结果表明,DCW算法的收敛速度明显优于LDW算法,收敛精度也有所提高. 相似文献
17.
基本粒子群算法(PSO)存在早熟问题,且惯性权重对参数辨识结果的影响较大,为此提出将变权重PSO算法和全局最优位置变异PSO算法相结合的改进PSO算法,并将其应用于双馈感应发电机(DFIG)的参数辨识。分析了DFIG中各参数的可辨识性和辨识难易度,给出了基于改进PSO算法的参数辨识步骤。与采用基本PSO算法、变权重PSO算法和全局最优位置变异PSO算法的参数辨识结果相比较,该方法具有收敛速度快、辨识误差小的优点,即使在较大的搜索范围内仍具有较高的辨识精度。 相似文献
18.
【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自适应的惯性权重,以起到平衡全局和局部寻优能力的作用;对最优粒子进行自适应的柯西变异,拓展最优粒子的搜索空间,降低粒子陷入局部最优的可能性;最后对算法进行仿真实验。【结果】新算法能够增强全局搜索能力,有效避免局部最优,具有更快的收敛速度。【结论】新算法克服了标准粒子群优化算法的缺点,为进一步研究粒子群优化算法的改进和应用提供科学依据。 相似文献
19.
基于标准PSO算法,通过分析惯性权值和学习因子2类参数不同的取值策略对常用测试函数优化结果的影响,来探究2类参数对算法性能的影响.实验结果表明,2类参数恰当的动态改变不仅能明显提高单峰函数的寻优精度和收敛速度,而且能提高双峰和多峰函数的寻优概率;惯性权值主要影响算法的收敛速度,随着惯性权值的递增,算法收敛速度逐渐加快;学习因子主要影响算法的寻优精度,当反映粒子的自我学习能力和向群体最优粒子学习的能力的学习因子同增同减变化时,寻优精度提高;惯性权值递增结合2种学习因子的同增同减变化,或惯性权值递减结合2种学习因子的一增一减变化,均可使标准PSO算法性能得到显著提高. 相似文献