首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldaz H  Rice LM  Stearns T  Agard DA 《Nature》2005,435(7041):523-527
Microtubules are hollow polymers of alphabeta-tubulin that show GTP-dependent assembly dynamics and comprise a critical part of the eukaryotic cytoskeleton. Initiation of new microtubules in vivo requires gamma-tubulin, organized as an oligomer within the 2.2-MDa gamma-tubulin ring complex (gamma-TuRC) of higher eukaryotes. Structural insight is lacking regarding gamma-tubulin, its oligomerization and how it promotes microtubule assembly. Here we report the 2.7-A crystal structure of human gamma-tubulin bound to GTP-gammaS (a non-hydrolysable GTP analogue). We observe a 'curved' conformation for gamma-tubulin-GTPgammaS, similar to that seen for GDP-bound, unpolymerized alphabeta-tubulin. Tubulins are thought to represent a distinct class of GTP-binding proteins, and conformational switching in gamma-tubulin might differ from the nucleotide-dependent switching of signalling GTPases. A crystal packing interaction replicates the lateral contacts between alpha- and beta-tubulins in the microtubule, and this association probably forms the basis for gamma-tubulin oligomerization within the gamma-TuRC. Laterally associated gamma-tubulins in the gamma-TuRC might promote microtubule nucleation by providing a template that enhances the intrinsically weak lateral interaction between alphabeta-tubulin heterodimers. Because they are dimeric, alphabeta-tubulins cannot form microtubule-like lateral associations in the curved conformation. The lateral array of gamma-tubulins we observe in the crystal reveals a unique functional property of a monomeric tubulin.  相似文献   

2.
Proper positioning of the cell division plane during mitosis is essential for determining the size and position of the two daughter cells--a critical step during development and cell differentiation. A bipolar microtubule array has been proposed to be a minimum requirement for furrow positioning in mammalian cells, with furrows forming at the site of microtubule plus-end overlap between the spindle poles. Observations in other species have suggested, however, that this may not be true. Here we show, by inducing mammalian tissue cells with monopolar spindles to enter anaphase, that furrow formation in cultured mammalian cells does not require a bipolar spindle. Unexpectedly, cytokinesis occurs at high frequency in monopolar cells. Division always occurs at a cortical position distal to the chromosomes. Analysis of microtubules during cytokinesis in cells with monopolar and bipolar spindles shows that a subpopulation of stable microtubules extends past chromosomes and binds to the cell cortex at the site of furrow formation. Our data are consistent with a model in which chromosomes supply microtubules with factors that promote microtubule stability and furrowing.  相似文献   

3.
One human autoimmune serum was identified to react with centrosomes by immunofluorescence. We applied the affinity purification of membrane-bound antibody technique and demonstrated that the antibodies present in this antiserum reacted with a 31/29 ku centrosomal antigen. Immunofluorescence showed that this antigen is located at centrosome in a cell-cycle independent manner, and thereby it belongs to the family of centrosomal residents. We then uti- lized this autoimmune serum and antibodies against centrin and gamma-tubulin to investigate changes of centrosome cycle kinetics during premature chromosome condensation (PCC) artificially induced in V79-8 cells. We show here that centrosomal proteins continue to express when cells are synchronized at G1/S boundary and S phase by Hydroxyurea (HU). During this time, the addition of caffeine causes cells with unreplicated genome to go into mitosis, and induces the separation of the replicated centrosomes. These results suggest that the coordination of DNA synthesis and centrosome replication in the normal cell cycle can be uncoupled. Cells ensure that centrosome duplicates once, and only once during each DNA synthesis cycle through the tight and subtle coordination of cell cycle engine molecules, and thereby the assembly of bipolar spindle and the accurate transmission of genetic information.  相似文献   

4.
The acquired immunodeficiency syndrome (AIDS) is the late-stage clinical manifestation of long-term persistent infection with the human immunodeficiency virus type 1 (HIV-1). Immune responses directed against the virus and against virus-infected cells during the persistent infection fail to mediate resolution of the infection. As a result, a successful AIDS vaccine must elicit an immune state that will prevent the establishment of the persistent infection following introduction of the virus into the host. The third hypervariable (V3) domain of the HIV-1 gp120 envelope glycoprotein is a disulphide-linked closed loop of about 30 amino acids which binds and elicits anti-HIV-1 type-specific virus-neutralizing antibodies. The in vitro characteristics of anti-V3 domain antibody suggest that this antibody could by itself prevent HIV-1 infection in vivo, an idea supported by chimpanzee challenge studies in which protection against the HIV-1 persistent infection seemed to correlate with the presence of anti-V3 domain antibody. Here we directly demonstrate the protective efficacy of anti-V3 domain antibody in vivo and propose that this antibody is potentially useful as both a pre- and post-exposure prophylactic agent.  相似文献   

5.
Moberg KH  Bell DW  Wahrer DC  Haber DA  Hariharan IK 《Nature》2001,413(6853):311-316
During Drosophila development and mammalian embryogenesis, exit from the cell cycle is contingent on tightly controlled downregulation of the activity of Cyclin E-Cdk2 complexes that normally promote the transition from G1 to S phase. Although protein degradation has a crucial role in downregulating levels of Cyclin E, many of the proteins that function in degradation of Cyclin E have not been identified. In a screen for Drosophila mutants that display increased cell proliferation, we identified archipelago, a gene encoding a protein with an F-box and seven tandem WD (tryptophan-aspartic acid) repeats. Here we show that archipelago mutant cells have persistently elevated levels of Cyclin E protein without increased levels of cyclin E RNA. They are under-represented in G1 fractions and continue to proliferate when their wild-type neighbours become quiescent. The Archipelago protein binds directly to Cyclin E and probably targets it for ubiquitin-mediated degradation. A highly conserved human homologue is present and is mutated in four cancer cell lines including three of ten derived from ovarian carcinomas. These findings implicate archipelago in developmentally regulated degradation of Cyclin E and potentially in the pathogenesis of human cancers.  相似文献   

6.
Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase.   总被引:52,自引:0,他引:52  
The macrolide rapamycin induces cell cycle G1 arrest in yeast and in mammalian cells, which suggests that an evolutionarily conserved, rapamycin-sensitive pathway may regulate entry into S phase. In mammals, rapamycin inhibits interleukin-2 receptor-induced S phase entry and subsequent T-cell proliferation, resulting in immunosuppression. Here we show that interleukin-2 selectively stimulates the phosphorylation and activation of p70 S6 kinase but not the erk-encoded MAP kinases and rsk-encoded S6 kinases. Rapamycin completely and rapidly inhibits interleukin-2-induced phosphorylation and activation of p70 S6 kinase at concentrations comparable to those blocking S phase entry of T cells (0.05-0.2 nM). The structurally related macrolide FK506 competitively antagonizes the actions of rapamycin, indicating that these effects are mediated by FKBP, which binds the transition-state mimic structure common to both rapamycin and FK506 (refs 4, 6, 9-11). The selective blockade of the p70 S6 kinase activation cascade by the rapamycin-FKBP complex implicates this signalling pathway in the regulation of T cell entry into S phase.  相似文献   

7.
A mutant protein kinase C that can transform fibroblasts   总被引:9,自引:0,他引:9  
T Megidish  N Mazurek 《Nature》1989,342(6251):807-811
Expression of normal protein kinase C (PKC) isoenzymes in fibroblasts has been shown to alter growth regulation but has failed to induce complete transformation of the recipient cells. Here we report on a murine ultraviolet-induced fibrosarcoma cell line which has an unusual PKC subcellular distribution with 87% of the PKC activity associated with the membrane. We have cloned and sequenced the alpha-PKC complementary DNA from ultraviolet-induced-fibrosarcoma cells and from mouse Balb/c brain and found four point mutations in the fibrosarcoma PKC, of which three are in the highly conserved regulatory domain and one is in the conserved region of the catalytic domain. Expression of this mutant alpha-PKC gene in normal Balb/c 3T3 fibroblasts results in a fibrosarcoma-like PKC membrane localization and in cell transformation, as judged by their formation of dense foci, anchorage-independent growth and ability to induce solid tumours when inoculated into nude mice. By contast, transfectants expressing the normal alpha-PKC cDNA do not display a morphology typical of malignant transformed cells and fail to induce tumours in vivo. These findings demonstrate that point mutations in the primary structure of PKC modulate enzyme function and are responsible for inducing oncogenicity.  相似文献   

8.
C E Oakley  B R Oakley 《Nature》1989,338(6217):662-664
Microtubules, which are essential for mitosis and many other cytoskeletal functions, are composed primarily of alpha- and beta-tubulin. The properties of microtubules are due, in part, to proteins other than tubulins that are part of, or interact with, microtubules and the identification and characterization of such proteins is important to understanding how microtubules function. Analyses of mutations at the mipA (microtubule interacting protein) locus of Aspergillus nidulans have suggested that the product of mipA interacts specifically, probably physically, with beta-tubulin in vivo and is involved in microtubule function. We have cloned and sequenced the wild-type mipA gene as well as complementary DNA copies of its messenger RNA. Comparisons of the predicted product of mipA with tubulins from diverse organisms reveal that mipA is a previously undiscovered member of the tubulin superfamily of genes; the only member yet discovered that does not encode alpha- or beta-tubulin. We propose that the product of mipA be called gamma-tubulin.  相似文献   

9.
EB1(the end-binding protein 1)蛋白家族是一群广泛存在且高度保守的微管相关蛋白,存在于从酵母到人类的广泛的生物体中.它与微管正极和中心体结合,参与了绝大部分基于微管的生理过程,包括:维持细胞极性,调节染色体稳定性,有丝分裂纺锤体的定位,将微管锚定到成核位点.自从1995年,Su等人在人细胞中发现了EB1基因,各种生物体中EB1的同源物质被相继报道.十年来,人们通过对不同生物体的研究,试图揭开EB1在细胞中的分布以及它的生理功能.然而到目前为止,对于EB1的了解还非常有限.本文结合国外的研究成果,对EB1蛋白在调节微管动态、纺锤体定位和染色体的稳定性方面以及它与APC(the adenomatous polyposis coli)之间的相互作用作以综述.  相似文献   

10.
Y Gotoh  E Nishida  S Matsuda  N Shiina  H Kosako  K Shiokawa  T Akiyama  K Ohta  H Sakai 《Nature》1991,349(6306):251-254
The protein kinase MAP kinase, also called MAP2 kinase, is a serine/threonine kinase whose activation and phosphorylation are induced by a variety of mitogens, and which is thought to have a critical role in a network of protein kinases in mitogenic signal transduction. A burst in kinase activation and protein phosphorylation may also be important in triggering the dramatic reorganization of the cell during the transition from interphase to mitosis. The interphase-metaphase transition of microtubule arrays is under the control of p34cdc2 kinase, a central control element in the G2-M transition of the cell cycle. Here we show that a Xenopus kinase, closely related to the mitogen-activated mammalian MAP kinase, is phosphorylated and activated during M phase of meiotic and mitotic cell cycles, and that the interphase-metaphase transition of microtubule arrays can be induced by the addition of purified Xenopus M phase-activated MAP kinase or mammalian mitogen-activated MAP kinase to interphase extracts in vitro.  相似文献   

11.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

12.
Most eukaryotic cells rapidly and specifically depress synthesis of alpha- and beta-tubulin polypeptides in response to microtubule inhibitors which cause microtubule depolymerization and presumably increase the intracellular concentration of free subunits. Other drugs which interfere with microtubule function but which lead to a decrease in the subunit pool size have little effect on the rate of new tubulin synthesis. These findings have previously been interpreted to indicate that cultured cells synthesize tubulin constitutively unless the subunit pool rises above a specified level. At this point an autoregulatory control mechanism is triggered which suppresses new tubulin synthesis through specific loss of tubulin mRNAs. That tubulin RNA levels are dramatically lowered by microtubule depolymerizing drugs is unquestionably correct; that fluctuations in the depolymerized tubulin pool size are responsible for altered RNA levels rests, however, entirely on the presumptive effects of different microtubule drugs. This caveat is not trivial, as these drugs induce gross morphological alterations, and the specificities and detailed mechanisms of action of such drugs remain poorly understood. To investigate the effect of altered levels of tubulin subunits on the rate of new tubulin synthesis in mammalian cells, we have microinjected purified tubulin subunits into cells in culture and analysed the synthesized proteins. We report here that tubulin synthesis is rapidly and specifically suppressed by injection of an amount of tubulin roughly equivalent to 25-50% of the amount initially present in the cell, thus indicating the presence of an eukaryotic, autoregulatory control mechanism which specifies tubulin content in a cultured mammalian cell line.  相似文献   

13.
The cellular machinery promoting phagocytosis of corpses of apoptotic cells is well conserved from worms to mammals. An important component is the Caenorhabditis elegans engulfment receptor CED-1 (ref. 1) and its Drosophila orthologue, Draper. The CED-1/Draper signalling pathway is also essential for the phagocytosis of other types of 'modified self' including necrotic cells, developmentally pruned axons and dendrites, and axons undergoing Wallerian degeneration. Here we show that Drosophila Shark, a non-receptor tyrosine kinase similar to mammalian Syk and Zap-70, binds Draper through an immunoreceptor tyrosine-based activation motif (ITAM) in the Draper intracellular domain. We show that Shark activity is essential for Draper-mediated signalling events in vivo, including the recruitment of glial membranes to severed axons and the phagocytosis of axonal debris and neuronal cell corpses by glia. We also show that the Src family kinase (SFK) Src42A can markedly increase Draper phosphorylation and is essential for glial phagocytic activity. We propose that ligand-dependent Draper receptor activation initiates the Src42A-dependent tyrosine phosphorylation of Draper, the association of Shark and the activation of the Draper pathway. These Draper-Src42A-Shark interactions are strikingly similar to mammalian immunoreceptor-SFK-Syk signalling events in mammalian myeloid and lymphoid cells. Thus, Draper seems to be an ancient immunoreceptor with an extracellular domain tuned to modified self, and an intracellular domain promoting phagocytosis through an ITAM-domain-SFK-Syk-mediated signalling cascade.  相似文献   

14.
Sperm from neonatal mammalian testes grafted in mice   总被引:41,自引:0,他引:41  
Spermatogenesis is a productive and highly organized process that generates virtually unlimited numbers of sperm during adulthood. Continuous proliferation and differentiation of germ cells occur in a delicate balance with other testicular compartments, especially the supporting Sertoli cells. Many complex aspects of testis function in humans and large animals have remained elusive because of a lack of suitable in vitro or in vivo models. Germ cell transplantation has produced complete donor-derived spermatogenesis in rodents but not in other mammalian species. Production of sperm in grafted tissue from immature mammalian testes and across species has not yet been accomplished. Here we report the establishment of complete spermatogenesis by grafting testis tissue from newborn mice, pigs or goats into mouse hosts. This approach maintains structural integrity and provides the accessibility that is essential for studying and manipulating the function of testes and for preserving the male germ line. Our results indicate that this approach is applicable to diverse mammalian species.  相似文献   

15.
Schober M  Schaefer M  Knoblich JA 《Nature》1999,402(6761):548-551
Asymmetric cell divisions can be generated by the segregation of determinants into one of the two daughter cells. In Drosophila, neuroblasts divide asymmetrically along the apical-basal axis shortly after their delamination from the neuroectodermal epithelium. Several proteins, including Numb and Miranda, segregate into the basal daughter cell and are needed for the determination of its correct cell fate. Both the apical-basal orientation of the mitotic spindle and the localization of Numb and Miranda to the basal cell cortex are directed by Inscuteable, a protein that localizes to the apical cell cortex before and during neuroblast mitosis. Here we show that the apical localizaton of Inscuteable requires Bazooka, a protein containing a PDZ domain that is essential for apical-basal polarity in epithelial cells. Bazooka localizes with Inscuteable in neuroblasts and binds to the Inscuteable localization domain in vitro and in vivo. In embryos lacking both maternal and zygotic bazooka function, Inscuteable no longer localizes asymmetrically in neuroblasts and is instead uniformly distributed in the cytoplasm. Mitotic spindles in neuroblasts are misoriented in these embryos, and the proteins Numb and Miranda fail to localize asymmetrically in metaphase. Our results suggest that direct binding to Bazooka mediates the asymmetric localization of Inscuteable and connects the asymmetric division of neuroblasts to the axis of epithelial apical-basal polarity.  相似文献   

16.
Visintin R  Hwang ES  Amon A 《Nature》1999,398(6730):818-823
  相似文献   

17.
White PM  Doetzlhofer A  Lee YS  Groves AK  Segil N 《Nature》2006,441(7096):984-987
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.  相似文献   

18.
MOR1 is essential for organizing cortical microtubules in plants   总被引:56,自引:0,他引:56  
Microtubules orchestrate cell division and morphogenesis, but how they disassemble and reappear at different subcellular locations is unknown. Microtubule organizing centres are thought to have an important role, but in higher plants microtubules assemble in ordered configurations even though microtubule organizing centres are inconspicuous or absent. Plant cells generate highly organized microtubule arrays that coordinate mitosis, cytokinesis and expansion. Inhibiting microtubule assembly prevents chromosome separation, blocks cell division and impairs growth polarity. Microtubules are essential for the formation of cell walls, through an array of plasma-membrane-associated cortical microtubules whose control mechanisms are unknown. Using a genetic strategy to identify microtubule organizing factors in Arabidopsis thaliana, we isolated temperature-sensitive mutant alleles of the MICROTUBULE ORGANIZATION 1 (MOR1) gene. Here we show that MOR1 is the plant version of an ancient family of microtubule-associated proteins. Point mutations that substitute single amino-acid residues in an amino-terminal HEAT repeat impart reversible temperature-dependent cortical microtubule disruption, showing that MOR1 is essential for cortical microtubule organization.  相似文献   

19.
20.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号