首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage   总被引:11,自引:0,他引:11  
Multiple endocrine neoplasis type 2A (MEN2A) is one of several kinds of cancers that appear to be inherited in an autosomally dominant fashion. We have assigned the MEN2A locus to chromosome 10 by linkage with a new DNA marker (D10S5). The linkage led us to investigate other chromosome 10 markers and demonstrate linkage between the disease locus and the interstitial retinol-binding protein (IRBP) gene. The D10S5 locus was sublocalized to 10q21.1 by hybridization in situ and the IRBP gene to p11.2----q11.2 with a secondary site at q24----q25. The linkages were established using 292 members of five families, three different restriction fragment length polymorphisms (RFLPs) at D10S5 and two RFLPs recognized by the IRBP probe. The recombination frequencies from pairwise linkage analysis between the disease and two marker loci D10S5 and IRBP were 0.19 and 0.11, with maximum lod scores of 3.6 and 8.0 respectively. Ordering of the three loci by multipoint analysis placed the IRBP gene approximately midway between the disease and D10S5 loci.  相似文献   

2.
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease   总被引:157,自引:0,他引:157  
Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohn's disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease. Wild-type NOD2 activates nuclear factor NF-kappaB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohn's disease, and suggest a link between an innate immune response to bacterial components and development of disease.  相似文献   

3.
The group of retinopathies termed retinitis pigmentosa (RP) greatly contribute to visual dysfunction in man with a frequency of roughly 1 in 4,000. We mapped the first autosomal dominant RP (adRP) gene to chromosome 3q, close to the gene encoding rhodopsin, a rod photoreceptor pigment protein. Subsequently, mutations in this gene have been implicated as responsible for some forms of adRP. Another adRP gene has been mapped to chromosome 8p. A third adRP gene in a large Irish pedigree has been mapped to chromosome 6p, showing tight linkage with the gene for peripherin, a photoreceptor cell-specific glycoprotein, which is thus a strong candidate for the defective gene. We have now identified a three-base-pair deletion which results in the loss of one of a pair of highly conserved cysteine residues in the predicted third transmembrane domain of peripherin. This deletion segregates with the disease phenotype but is not present in unaffected controls, and suggests that mutant peripherin gives rise to retinitis pigmentosa.  相似文献   

4.
小麦新种质241主要特异性状的遗传性   总被引:2,自引:0,他引:2  
为了探求小麦新种质241巨穗、粒大、结实率高等优良性状的遗传机理,应用单体分析和双端体分析方法对241材料进行遗传学研究。结果表明,小麦种质材料241的3A、5A、2B、1D和6D染色体上具有控制穗长的基因,其中2B染色体上的基因表现为强效,3A、5A、1D和6D染色体上的基因表现为弱效。控制穗长的基因定位在3AL、5AL、1DL和6DL染色体臂上,其中6DL染色体臂上可能具有控制241穗长的1个新基因。  相似文献   

5.
Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.  相似文献   

6.
One in 10,000 children develops Wilms' tumour, an embryonal malignancy of the kidney. Although most Wilms' tumours are sporadic, a genetic predisposition is associated with aniridia, genito-urinary malformations and mental retardation (the WAGR syndrome). Patients with this syndrome typically exhibit constitutional deletions involving band p13 of one chromosome 11 homologue. It is likely that these deletions overlap a cluster of separate but closely linked genes that control the development of the kidney, iris and urogenital tract (the WAGR complex). A discrete aniridia locus, in particular, has been defined within this chromosomal segment by a reciprocal translocation, transmitted through three generations, which interrupts 11p13. In addition, the specific loss of chromosome 11p alleles in sporadic Wilms' tumours has been demonstrated, suggesting that the WAGR complex includes a recessive oncogene, analogous to the retinoblastoma locus on chromosome 13. In WAGR patients, the inherited 11p deletion is thought to represent the first of two events required for the initiation of a Wilms' tumour, as suggested by Knudson from epidemiological data. We have now isolated the deleted chromosomes 11 from four WAGR patients in hamster-human somatic cell hybrids, and have tested genomic DNA from the hybrids with chromosome 11-specific probes. We show that 4 of 31 markers are deleted in at least one patient, but that of these markers, only the gene encoding the beta-subunit of follicle-stimulating hormone (FSHB) is deleted in all four patients. Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region. In hybrids prepared from a balanced translocation carrier with familial aniridia, the four markers segregate into proximal and distal groups. The translocation breakpoint, which identifies the position of the aniridia gene on 11p, is immediately proximal to FSHB, in the interval between FSHB and the catalase gene.  相似文献   

7.
A Vortkamp  M Gessler  K H Grzeschik 《Nature》1991,352(6335):539-540
The Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder affecting limb and craniofacial development in humans. GCPS-affected individuals are characterized by postaxial polysyndactyly of hands, preaxial polysyndactyly of feet, macroephaly, a broad base of the nose with mild hypertelorism and a prominent forehead. The genetic locus has been pinpointed to chromosome 7p13 by three balanced translocations associated with GCPS in different families. This assignment is corroborated by the detection of two sporadic GCPS cases carrying overlapping deletions in 7p13 (ref. 7), as well as by tight linkage of GCPS to the epidermal growth factor receptor gene in 7p12-13 (ref. 8). Of the genes that map to this region, those encoding T cell receptor-gamma, interferon-beta 2, epidermal growth factor receptor, and Hox1.4, a potential candidate gene for GCPS, have been excluded from the region in which the deletions overlap. Here we show that two of the three translocations interup the GLI3 gene, a zinc-finger gene of the GLI-Krüppel family already localized to 7p13 (refs 5, 6). The breakpoints are within the first third of the coding sequence. In the third translocation, chromosome 7 is broken at about 10 kilobases downstream of the 3' end of GLI3. Our results indicate that mutations disturbing normal GLI3 expression may have a causative role in GCPS.  相似文献   

8.
Non-insulin-dependent diabetes mellitus (NIDDM) is a major health problem, affecting 5% of the world population. Genetic factors are important in NIDDM, but the mechanisms leading to glucose intolerance are unknown. Genetic linkage has been investigated in multigeneration families to localize, and ultimately identify, the gene(s) predisposing to NIDDM. Here we report linkage between the glucokinase locus on chromosome 7p and diabetes in 16 French families with maturity-onset diabetes of the young, a form of NIDDM characterized by monogenic autosomal dominant transmission and early age of onset. Statistical evidence of genetic heterogeneity was significant, with an estimated 45-95% of the 16 families showing linkage to glucokinase. Because glucokinase is a key enzyme of blood glucose homeostasis, these results are evidence that a gene involved in glucose metabolism could be implicated in the pathogenesis of NIDDM.  相似文献   

9.
A locus segregating with familial Alzheimer's disease (AD) has been mapped to chromosome 21, close to the amyloid precursor protein (APP) gene. Recombinants between the APP gene and the AD locus have been reported which seemed to exclude it as the site of the mutation causing familial AD. But recent genetic analysis of a large number of AD families has demonstrated that the disease is heterogeneous. Families with late-onset AD do not show linkage to chromosome 21 markers. Some families with early-onset AD show linkage to chromosome 21 markers, but some do not. This has led to the suggestion that there is non-allelic genetic heterogeneity even within early onset familial AD. To avoid the problems that heterogeneity poses for genetic analysis, we have examined the cosegregation of AD and markers along the long arm of chromosome 21 in a single family with AD confirmed by autopsy. Here we demonstrate that in this kindred, which shows linkage to chromosome 21 markers, there is a point mutation in the APP gene. This mutation causes an amino-acid substitution (Val----Ile) close to the carboxy terminus of the beta-amyloid peptide. Screening other cases of familial AD revealed a second unrelated family in which this variant occurs. This suggests that some cases of AD could be caused by mutations in the APP gene.  相似文献   

10.
Recent work suggests that an autosomal dominant gene for schizophrenia may be located on the 5q11-q13 region of chromosome 5 (refs 1 and 2): a report of schizophrenia associated with trisomy 5q11-q13 in two members of a family of Chinese origin prompted the discovery of linkage with markers p105-599Ha and p105-153Ra in five Icelandic and two English schizophrenic families. The strongest linkage was observed when the phenotype was broadly defined to include minor psychiatric diagnoses not traditionally considered part of the schizophrenia spectrum. By contrast, no evidence was found of linkage in a single multiplex Swedish schizophrenic pedigree. To determine whether these conflicting results arise from genetic and/or uncertainties in defining the schizophrenic phenotype, we examined fifteen Scottish schizophrenic families with restriction fragment length polymorphisms that span this region. We found no evidence for linkage, regardless of how broadly or narrowly the schizophrenic phenotype is defined, and conclude that a susceptibility locus, whose presence awaits confirmation, on the proximal portion of the long arm of chromosome 5 can be responsible for only a minority of cases of familial schizophrenia.  相似文献   

11.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   

12.
Deletion of genes on chromosome 1 in endocrine neoplasia   总被引:22,自引:0,他引:22  
Recent studies have identified normal cellular DNA sequences which are lost in the development of embryonal and adult tumours. These tumours are thought to arise after a primary mutation in one allele of such a sequence is followed by loss of its normal homologue. In familial cases, the primary mutation is transmitted in the germ line. The secondary mutation may involve a substantial loss of chromosomal material and thus lead to identification of the site of the inherited mutation. We have examined constitutional and tumour genotypes of medullary thyroid carcinomas and phaeochromocytomas which develop in the dominantly inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2) to locate the predisposing gene in this syndrome. We observed deletion of a hypervariable region of DNA on the short arm of chromosome 1 in seven out of fourteen tumours. Analysis of the parental origin of the deleted allele in two families showed that it was derived from the affected parent in one case, which suggests that the deletion does not reflect the site of the inherited mutation in MEN2. The deleted region is distal to the breakpoint commonly detected in neuroblastomas, which share with the tumours of MEN2 embryological origin from neuroectoderm.  相似文献   

13.
Using F2 population derived from the cross of tall inbred 7922 by dwarf inbred 5003, an RFLP linkage map of maize has been constructed, on which 85 markers are distributed among 10 linkage groups and span maize genome about 1827.8 cM with an average distance (24.4 cM) between markers. 106 F2:3 lines of the population were grown in a 10 × 11 simple rectangular lattice design of one-raw plots with two replications and evaluated for plant height (PH). With interval mapping procedure, 5 QTLs controlling plant height have been identified and their genetic effects and gene action determined. 2 major QTLs with opposite effect have been discovered. One for increasing plant height isph1 which is located at chromosome 2 and accounts for 51.8% of the total phenotypic variation; the other for decreasing plant height isph3 which is located at chromosome 5 and accounts for 38.6% of the total phenotypic variation. The chromosomal location ofph3 might be the same as or close to the position ofbv1, a dwarf mutant of maize.  相似文献   

14.
A class of alleles at the VNTR (variable number of tandem repeat) locus in the 5' region of the insulin gene (INS) on chromosome 11p is associated with increased risk of insulin-dependent diabetes mellitus (IDDM), but family studies have failed to demonstrate linkage. INS is thought to contribute to IDDM susceptibility but this view has been difficult to reconcile with the lack of linkage evidence. We thus investigated polymorphisms of INS and neighbouring loci in random diabetics, IDDM multiplex families and controls. HLA-DR4-positive diabetics showed an increased risk associated with common variants at polymorphic sites in a 19-kilobase segment spanned by the 5' INS VNTR and the third intron of the gene for insulin-like growth factor II (IGF2). As INS is the major candidate gene from this region, diabetic and control sequence were compared to identify all INS polymorphisms that could contribute to disease susceptibility. In multiplex families the IDDM-associated alleles were transmitted preferentially to HLA-DR4-positive diabetic offspring from heterozygous parents. The effect was strongest in paternal meioses, suggesting a possible role for maternal imprinting. Our results strongly support the existence of a gene or genes affecting HLA-DR4 IDDM susceptibility which is located in a 19-kilobase region of INS-IGF2. Our results also suggest new ways to map susceptibility loci in other common diseases.  相似文献   

15.
Fine mapping of Helminthosporium turcicum resistance gene Ht2 is extremely valuable for map-based cloning of the Ht2 gene,gaining a better knowledge of the distribution of resistance genes in maize genome and marker-assisted selection in maize breeding.An F2 mapping population was developed from a cross between a resistant inbred line 77Ht2 and a susceptible inbred line Huobai.With the aid of RFLP marker analyses,the Ht2 gene was mapped between the RFLP markers UMC89 and BNL2.369on chromosome 8,with a genetic distance of 0.9cM to BNL2.369.There was a linkage between SSR markers UMC1202,BNLG1152,UMC1149 and the Ht2 gene by SSR assay,Among the SSR markers,the genetic distance between UMC1149 and the Ht2 gene was 7.2cM,By bulked segregant analysis 7 RAPD-amplified products which were probably linked to the Ht2 gene were selected after screening 450 RAPD primers and converted the single-copy ones into SCAR markers.Linkage analysis showed that the genetic distance between the SCAR marker SD-06633 and the Ht2 gene was 0.4cM.From these results,a part of linkage map around the Ht2 gene was constructed.  相似文献   

16.
Mapping of mutation causing Friedreich's ataxia to human chromosome 9   总被引:29,自引:0,他引:29  
Friedreich's ataxia is an autosomal recessive disease with progressive degeneration of the central and peripheral nervous system. The biochemical abnormality underlying the disorder has not been identified. Prompted by the success in localizing the mutations causing Duchenne muscular dystrophy, Huntington's disease and cystic fibrosis, we have undertaken molecular genetic linkage studies to determine the chromosomal site of the Friedreich's ataxia mutation as an initial step towards the isolation and characterization of the defective gene. We report the assignment of the gene mutation for this disorder to chromosome 9p22-CEN by genetic linkage to an anonymous DNA marker MCT112 and the interferon-beta gene probe. In contrast to the clinical variation seen for the disorder, no evidence of genetic heterogeneity is observed.  相似文献   

17.
A closely linked genetic marker for cystic fibrosis   总被引:8,自引:0,他引:8  
Cystic fibrosis is a recessive genetic disorder, characterized clinically by chronic obstructive lung disease, pancreatic insufficiency and elevated sweat electrolytes; affected individuals rarely live past their early twenties. Cystic fibrosis is also one of the most common genetic diseases in the northern European population. The frequency of carriers of mutant alleles in some populations is estimated to be as high as 1 in 20, carrying a concomitant burden of about one affected child in 1,500 births. Because little is known of the essential biochemical defect caused by the mutant gene, a genetic linkage approach based on arbitrary genetic markers and family studies is indicated to determine the chromosomal location of the cystic fibrosis (CF) gene. We have now obtained evidence for tight linkage between the CF locus and a DNA sequence polymorphism at the met oncogene locus. This evidence, combined with the physical localization data for the met locus presented in the accompanying paper, places the CF locus in the middle third of the long arm of chromosome 7, probably between bands q21 and q31.  相似文献   

18.
玉米穗部性状的QTL定位   总被引:5,自引:0,他引:5  
以玉米自交系L26和095组配的Fz世代为定位群体,采用SSR分子标记技术构建了包括98个位点的连锁图谱,结合F2穗部性状的鉴定结果,利用复合区间作图法对秃尖长等8个穗部性状进行基因定位,共检出21个QTL.其中穗长检测到3个QTL;穗粗、穗行数分别检测到2个QTL;行粒数检测到3个QTL;轴粗检测到2个QTL;200粒质量检测到3个QTL;穗粒质量检测到6个QTL;秃尖长没有检测到QTL.检出的21个QTL中,有10个QTL的解释变异率超过了20%,表现为主效QTL效应.研究还发现,穗部性状QTL在玉米10条染色体上分布不均匀,且成簇分布.该试验中检测到的21个QTL中,有10个影响不同性状的QTL位于3个染色体区域.各个QTL位点上起增、减效作用的等位基因在亲本间分布不均匀.  相似文献   

19.
Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic anaemias. HS red cells from both autosound dominant and recessive variants are spectrin-deficient, which correlates with the severity of the disease. Some patients with recessive HS have a mutation in the spectrin alpha-2 domain (S.L.M. et al., unpublished observations), and a few dominant HS patients have an unstable beta-spectrin that is easily oxidized, which damages the protein 4.1 binding site and weakens spectrin-actin interactions. In most patients, however, the cause of spectrin deficiency is unknown. The alpha- and beta-spectrin loci are on chromosomes 1 and 14 respectively. The only other genetic locus for HS is SPH2, on the short arm of chromosome 8 (8p11). This does not correspond to any of the known loci of genes for red cell membrane proteins including protein 4.1 (1p36.2-p34), the anion exchange protein (AE1, band 3; 17q21-qter), glycophorin C (2q14-q21), and beta-actin (7pter-q22). Human erythrocyte ankyrin, which links beta-spectrin to the anion exchange protein, has recently been cloned. We now show that the ankyrin gene maps to chromosome 8p11.2, and that one copy is missing from DNA of two unrelated children with severe HS and heterozygous deletions of chromosome 8 (del(8)(p11-p21.1)). Affected red cells are also ankyrin-deficient. The data suggest that defects or deficiency or ankyrin are responsible for HS at the SPH2 locus.  相似文献   

20.
J Gitschier  D Drayna  E G Tuddenham  R L White  R M Lawn 《Nature》1985,314(6013):738-740
Haemophilia A is the most common inherited bleeding disorder in man, affecting approximately 1 male in 10,000. The disease is caused by a deficiency in the gene for factor VIII, a component of the intrinsic coagulation pathway. Due to the broad range of clotting activity in normal and heterozygous females, it is often difficult to confirm the status of women at risk for carrying the disease. A genetic marker in the form of a restriction fragment length polymorphism (RFLP) within or tightly linked to the factor VIII gene would serve as a tag for the haemophilia gene, thus allowing both accurate carrier detection and improved, earlier prenatal diagnosis by chorionic villi sampling. The recent isolation of the factor VIII gene has allowed a search for RFLPs within the gene, and we report here the identification of a common polymorphism within the factor VIII gene, revealed by the restriction enzyme BclI, which can be used diagnostically in about 42% of all families. Although the disease haemophilia A has been mapped to the distal portion of Xq, the BclI RFLP makes possible higher-resolution genetic linkage mapping with respect to other polymorphic markers on this portion of the X chromosome. We have established close linkage of the factor VIII gene to several useful RFLP markers, including the highly informative marker St14. These markers should also be useful for prenatal diagnosis of haemophilia A and for detection of its carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号