首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
针对粗糙海面上舰船类超电大尺寸复杂目标电磁散射问题,提出了一种基于混合面元投影(HPP)和物理光学法(PO)的计算目标与海面耦合散射的快速算法。首先建立基于海谱的海面几何模型,并考虑海面面元的微粗糙特性,修正海面反射系数,然后针对目标和海面的结构特点,形成两种尺度面元混合的目标与海面模型,对电磁波在海面和目标之间的多次反射按照GO原理进行快速投影运算,并利用PO计算投影区域的散射贡献,最后给出了几组典型实例的计算结果。数值计算表明,该方法对于海面舰船类目标的散射计算是高效、准确的。  相似文献   

2.
地海交界环境与其上方双目标复合散射的混合算法研究   总被引:1,自引:0,他引:1  
采用蒙特卡罗方法建立地海交界分区域复合粗糙面模型,陆地区域采用高斯谱模拟,近海海面区域采用基于变浅系数的北海海浪工程(joint North Sea wave project, JONSWAP)谱模拟;提出了基于分形理论的边界赋形方法,并运用多种反正切权函数处理实现了线型、月牙型、峡谷型和分形型边界的地海交界环境;基于矩量法和基尔霍夫近似的混合算法研究了地海交界环境与其上方双目标的复合电磁散射特性,对比了双目标分别位于两种典型环境和地海交界环境上方时的复合散射系数曲线,研究了复合散射系数随入射角、陆地区域参数、海面参数、边界形状、双目标参数及双目标类型的变化情况,并做了详细分析与讨论。结果表明该混合算法的高效性和准确性,数值仿真结果对地海交界环境上方目标的探测、遥感及成像具有借鉴意义。  相似文献   

3.
研究了地海交界分区域复合粗糙面的建模方法及其电磁散射特性。采用蒙特卡罗方法建立地海交界分区域复合粗糙面模型,采用高斯谱模拟实际地面,采用变浅系数与北海联合海浪计划(joint north sea wave project, JONSWAP)谱结合而成的有限水深海谱模拟实际近海海面,基于分区域复合粗糙面建模理论,运用多种加权反正切函数处理实现了线型、月牙型、峡谷型自然环境。考虑了各介质区域内部的面元耦合以及区域之间和交界处面元的耦合作用,对地海交界分区域复合粗糙面的散射问题,提出了一种基于分区域面元的迭代物理光学法,采用快速远场近似(fast far field approximation, FaFFA)与局部耦合技术加速其迭代过程。对比了陆地粗糙面、海面和地海交界分区域复合粗糙面的电磁散射特性,计算了分区域复合粗糙面的散射系数,并讨论了极化方式、入射角、边界形状、陆地粗糙面的均方根高度、相关长度和近海海面的风速对地海交界分区域复合粗糙面电磁散射特性的影响。基于迭代物理光学法所获取的分区域复合粗糙面总散射场,采用正侧视条带式成像模式,选用距离多普勒算法对不同特点的地海分区域复合粗糙面进行合〖JP2〗成孔径雷达(synthetic aperture radar, SAR)成像,并讨论了陆地粗糙面与海面各自的相对介电常数对SAR成像的影响。该研究包括了地海交界环境的建模、电磁散射特性的求解及其SAR成像,由仿真结果得到了地海交界分区域复合粗糙面的SAR像特点,对反演地海交界环境的电磁特性以及遥感、探测具有借鉴意义。  相似文献   

4.
为满足合成孔径雷达(synthetic aperture radar,SAR)在海洋遥感的应用需求,提出一种舰船目标SAR成像的快速仿真方法。对成像场景中重点关注的目标进行精确电磁建模,并利用"四路径"模型计算目标与海面的复合散射回波,对海面背景采用散射面元法计算回波;将舰船复合散射回波与海面回波进行合成得到总的SAR回波,利用聚束SAR成像处理方法获得SAR图像。结果表明:该算法避免了对整个成像区域进行复杂的电磁仿真,能够有效降低对海面大场景的电磁计算效率。由于在目标区域采用高频电磁算法,保留了目标的电磁散射的精细结构,为精确模拟SAR回波提供了一种准确而高效的仿真算法。  相似文献   

5.
分层粗糙面的电磁散射研究   总被引:1,自引:0,他引:1  
基于矩量法(method of moment,MOM)及基尔霍夫近似(Kirchhoff approximation,KA)研究了分层粗糙面的电磁散射问题。首先,利用经典MOM求解了上层粗糙面的总场,包括直接入射场及由其激发的直接散射场。然后,将锥形入射波引入到传统KA中,利用其求解了分层粗糙面的透射场。数值计算并讨论了粗糙面高度起伏均方根、相关长度及分层粗糙面间距等参数对分层高斯粗糙面双站散射系数的影响。  相似文献   

6.
SMFSIA/CAG快速计算二维分形粗糙面的电磁散射特性   总被引:1,自引:1,他引:0  
应用稀疏矩阵平面迭代/规范网格法(sparse-matrix flat-surface iterative approach and canonical grid method,SMFSIA/CAG)快速计算了二维分形粗糙面的电磁散射特性。在SMFSIA/CAG中,基于迭代法的原理,通过加快迭代收敛速度和加速矩阵向量积两个方面对该算法进行了改进,推导了关于平面展开的高阶泰勒级数展开公式,并对近场相关距离和泰勒级数展开阶数对算法效率的影响进行了分析。SMFSIA/CAG的应用降低了计算量,实现了对二维分形粗糙面电磁散射特性快速、准确地仿真计算。  相似文献   

7.
提出一种基于区域分解的二维海面生成方法,将海谱划分为若干个子区域,分区域生成同完整海谱相对应的海面。将加权曲率近似方法与区域分解相结合,计算整幅海面的电磁散射,仿真并分析了L和X波段下海面多普勒谱特性。结果表明,所提出的方法解决了具有庞大采样网格的海面生成和电磁散射计算问题,使得在微波高频段下的粗糙海面多普勒谱仿真仍可在普通微机上实现,且更适应于多线程并行运算。  相似文献   

8.
为快速获取分层粗糙面的电磁散射特性,提出一种结合前后向迭代算法(forward-backward method, FBM)与谱积分加速法(spectral accelerate algorithm, SAA)的快速算法(FBM/SAA),该算法的计算量和内存均与粗糙面离散剖分产生的未知量同量级(O(N))。建立了分层粗糙面上关于未知电流分布的电场积分方程并采用矩量法(method of moment, MoM)将其离散为矩阵方程;在用FBM对矩阵方程进行迭代求解过程中,采用SAA技术加速计算矩阵和矢量乘积以快速求解;将FBM/SAA应用于三层媒质分层粗糙面的双站散射系数的计算,计算结果与传统MoM和FBM相一致,证明了算法的有效性;分析了粗糙面参数不同情况下算法的收敛性,比较了传统MoM和FBM/SAA所耗费的CPU时间。结果表明,在计算较长分层粗糙面的散射时,FBM/SAA具有明显优势。  相似文献   

9.
在矩量法(MOM)的基础上,采用混合场积分方程(CFIE)结合累进迭代的数值方法(PNM)研究了电大尺寸目标电磁散射问题。目标被分成一些小区域,因此缩小了所需要求逆的矩阵的大小并且减少了计算时间。数值模拟计算了理想导电的圆柱,矩形柱的表面电流分布。所得的结果和一般分域基矩量法的结果以及圆柱的理论计算结果吻合得很好ss,说明了本文方法的有效性。  相似文献   

10.
为快速获取电大尺寸随机粗糙面下方埋藏目标的电磁散射特性,基于层内波传播展开法(propagation-inside-layer-expansion, PILE)和带状矩阵迭代及规范网格法(banded matrix iterative approach canonical grid,BMIA/CAG),提出了结合带状矩阵迭代及规范网格法的扩展层内波传播展开法(E-PILE+BMIA/CAG)。数值计算过程中,以高斯随机粗糙面模拟实际地表面,并引入锥形入射波以减小人为截断粗糙面所引起的计算误差。为验证算法的有效性和收敛性,计算了一维介质粗糙面下方埋藏无限长二维介质圆柱目标的散射特性,研究了目标与粗糙面之间的相互作用,并与已有算法结果进行比较。最后计算了大入射角情况时地面下方埋藏目标的复合散射特性。该研究成果对于目标探测等领域具有一定的理论指导价值。  相似文献   

11.
通过有限脉冲响应滤波器理论和快速傅里叶变换方法,模拟了二维高斯随机粗糙面。从电场积分方程出发,利用RWG (Rao-Wilton-Glisson)基函数矩量法结合Galerkin方法,在PC集群并行平台上研究了二维导体高斯粗糙面对波束的电磁散射特性。为使得PC集群信息传递接口(message passing interface, MPI) 并行平台上各参与运算的各进程的负载平衡,对整个阻抗矩阵按行分块,并详细讨论了并行共轭梯度法求解矩量法矩阵方程的并行实现过程。最后在PC集群MPI并行平台上进行数值实验,分析了在波束入射条件下,均方根高度、相关长度和极化方式对二维导体高斯粗糙面的电磁散射特性的影响。  相似文献   

12.
基于微多相粒子群算法的介质粗糙面反演研究   总被引:1,自引:1,他引:0  
为快速有效地求解介质粗糙面的反演问题,提出了一种能反演地表面参数的新方法--微多相粒子群算法。利用矩量法结合前后向迭代法快速求解双站散射系数。采用单纯形法实现有导向的约束初始种群的生成,以双站散射系数的测量值和理论计算值的偏差为目标函数,通过多相粒子群算法和单纯形相结合的算法对优化变量进行优化,使目标函数达到最小值实现地表参数的反演。给出了应用该方法的具体步骤,分析了测量结构,通过仿真实验验证了算法的有效性。  相似文献   

13.
复合目标电磁散射的高效混合计算方法   总被引:1,自引:0,他引:1  
传统混合法在计算目标与粗糙面的耦合场时,需要耗费大量内存与时间。以计算复合目标后向电磁散射为目的,提出一种更为高效的混合计算方法。该混合法在单独处理粗糙面与目标方面与传统混合法一致,即使用基尔霍夫近似法(Kirchhoff approach,KA)处理粗糙面区域;使用矩量法(method of moment, MoM)并结合多层快速多极子(multilevel fast multipole algorithm, MLFMA)技术处理目标区域。与传统混合法所不同的是:根据大尺度粗糙面镜向散射最强的特点,只在粗糙面上截取一块很小的区域进行耦合场计算,从而极大减少内存与时间。大量数值实验表明,该方法在保证较高精度的同时,效率要远高于传统混合法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号