首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
孙金华 《科学通报》1987,32(18):1417-1417
大部分的豆科根瘤都可将ATP支持的固氮反应所生成的分子氢释放出来。由于豆科根瘤系统的固氮受光合产物供应的限制,因此,豆科根瘤的放氢被认为是一种耗能过程,导致固氮功效下降。 少数经筛选的根瘤菌,其形成的根瘤由于具有催化吸收分子氢的氢酶系统,因此不释放出分子氢;亦由于吸氢酶回收利用了固氮反应所放出的大量氢气,所以这样的根瘤就更为有  相似文献   

2.
自然信息     
微生物能在其生存环境中吸收或排出各种物质,若排出的物质是电极活性物质,就能构成所谓微生物电池。氢气是非常优良的电极活性物质,但能产生氢气的微生物并不多,需人工培养,将生成的氢气输  相似文献   

3.
薛由学 《科学通报》1957,2(10):307-307
把硝酸尾气通过碱洗塔除去CO_2,再经过装有触媒的反应炉与加入过量的氢气,在适宜的反应温度与空间速度的条件下燃烧,以除去NOx及O_2等,试验证明利用这种方法来回收硝酸尾气中的氮气,在工业应用上是可以实现的。文献中虽有较多关于CO_2在NaOH溶液中吸收系数的记载,但对于少量CO_2与NOx共同存在时的吸收速度系数则未有类似的资料,因此须根据试验  相似文献   

4.
房豪杰  欧阳彬  秦艳  董文博  侯惠奇 《科学通报》2005,50(20):2195-2198
利用激光闪光光解技术研究了水相中氮气饱和条件下CS_2与·OH反应的机理.瞬态吸收光谱的解析以及阳离子猝灭实验,结果表明:水相中CS_2与·OH反应生成了·CS_2OH加合物,而不是CS_2~ ;当1≤pH<5时,·CS_2OH会继续分解生成COS和·HS,而当pH>5时,·CS_2OH会与OH?反应生成CS_2O~-.同时还研究了温度对水相CS_2 ·OH~k→·CS_2OH反应的影响,得到该反应活化能为(26.9±1.0)kJ·mol~(-1).  相似文献   

5.
氮气分子(双氮,N=N)在大气中约占78%,是已知最不活泼的双原子物质。有趣的是,氮是所有生命所必需的,即用于蛋白质和DNA的构成。因此,双氮必需转变为易于植物吸收的分子,这类分子就是氨气(NH3)。  相似文献   

6.
世界范围内能源危机,气候和环境问题日渐凸显,亟需寻找合适的可替代能源.在众多新型能源中,氢能作为一种储量丰富、燃烧无污染、能量密度高的绿色能源,可以为燃料电池提供高效稳定的动力来源而引起广泛关注,如何将其安全高效的储存是氢气应用于车载燃料电池的技术瓶颈.硼氮氢类化合物由于具有储氢密度高、释氢条件温和等优点成为学术界关注热点.氨硼烷(ammonia borane,AB)为代表性化合物,其含氢量高(19.6%,质量百分比)、热稳定性适中、释氢温度低,被认为是最具潜力的新型储氢材料之一.氨硼烷中的一个正氢被金属原子取代后形成的金属氨硼烷(metal amidoborane,MAB),可以有效抑制硼吖嗪的生成.研究者们对这类储氢化合物进行了大量的理论和实验研究,改进其性能,降低释氢温度,缩短诱导期,减少挥发性有害气体硼吖嗪、氨气、乙硼烷的生成.本文从氨硼烷结构中特殊的双氢键入手,总结了氨硼烷的合成方法,并详细综述了添加剂对氨硼烷和金属氨硼烷释氢性能的影响,介绍了氨硼烷的再生以及在其他方面的研究进展,最后展望了氨硼烷的研究前景.  相似文献   

7.
自从发现碳微管 ,1 0年来它已经成为微型材料领域的宠物 ,被寄予厚望。科学家们把这些分子级的石墨管想象成一把开启超新技术大门的钥匙 ,例如超强度合成材料或微型电器。有一个具争议性的可能用途是把这些碳微管用作存储氢的介质。氢气被认为是一种理想的未来燃料 ,它质轻 ,来源充足 ,氧化产物 (水 )无毒 ,氢气和氧气在燃料箱内反应可产生电能。如果氢气燃料能被用作车辆燃料 ,则大气污染将大大降低 ,而我们对进口石油的依赖也将大大降低。但要做到这一点 ,氢气燃料必须能够被安全、有效、微型和经济地储存在汽车里。这是一个最头疼的问题 …  相似文献   

8.
工业上制取氢气,一般有二种方法。一种是电解水;一种是在大约800℃的高温下,用水蒸汽使煤氧化,生成一氧化碳和氢气的混合气,再提纯,获得所需要的氢气。前者耗电较多,后者得到的氢气纯度不高。现在美国康涅狄格大学的二位学者已发明一种制取氢气的新方法,既省电又能直接获得纯度很高的氢气。这种新方法的基础仍是水的电解,不过电解槽内的水中散布着磨碎的泥浆状煤屑。使用这种  相似文献   

9.
光对高等植物基因表达的调控作用   总被引:5,自引:0,他引:5  
王维荣 《世界科学》1989,11(1):20-22
光是高等植物生长发育及其分化过程中的一个极为重要的环境因子。除利用光能来转化和贮藏能量的光合作用这一高能反应外,植物对光的另一个低能反应——光形态建成反应已日益受到研究者们的重视。植物的光形态建成反应实质上是受光调控的植物的生长、发育和分化的过程。这个过程中,光的几个参数都很重要,它们是:光谱质量(光质)、光照度(光强)、光照频率(单位时间的照光次数)和持续时间、以及光照的空间对称性与非对称性。从40年代发现光敏色素至今,人们对于植物对光的反应的研究已分别从植株、器官、组织、细胞及分子水平进行了大量的工作。去年10月在日本召开的第16届国际植物学会议,专门讨论了植物光敏色素及植物的光形态建成,会议的论文几乎都是从分子水平上进行的,特别是其中有相当数量的报道是关于高等植物的基因表达受光调控方面的研究成果,表明植物光生物学的研究益已进入分子生物学时代。  相似文献   

10.
体育之巅     
专家们一致认为,成为世界冠军的首要因素是基因,也就是说是否拥有那些使人天生就会跨步、跳跃、高效率地消耗能量或吸入大量氧气的基因。可以说,伟大的运动员们都是统计学上的弱势群体,是“生理学上的怪物”。  相似文献   

11.
许维词  徐明华 《科学通报》2022,(22):2565-2567
<正>手性一级胺普遍存在于天然产物、药物、农药等分子中,比如构成生命体的20种天然α-氨基酸大部分都是手性一级胺.因此,发展简单高效的方法合成手性一级胺具有重要意义.另一方面,氨气是除了氮气外最便宜易得的氮源,已经被广泛应用于化工生产和有机合成中.但在手性合成方面,  相似文献   

12.
对混合气体进行分离,使之恢复原状,并循环使用,在许多工业生产中和实验研究上都非常重要。美国加利福尼亚大学化学与生物化学系的研究人员安德森发明了一种具有高度选择性的聚合膜系统,通过它可以有效地分离许多难以处理的气体对,如氢气与氮气,,氧气与氮气、二氧化碳和甲烷等。这种聚合膜以传导性的聚笨胺聚合物(一种用于电子工业的  相似文献   

13.
稀有气体在自然界中的含量很少,并且不容易和其他物质作用,因此发现它们是一件很困难的事。稀有气体的发现前后共经历了一个多世纪,整个过程既曲折又有趣。发现氩在地球上,人类首先发现的稀有气体是氩。早在1785年之前就已经发现了氢的英国化学家卡文迪许在空气中通入过量的氧气,用放电法使空气中的氮气和氧气反应生成一氧化氮,然后用碱溶液吸收它,剩余的氧再用红热的铜除去。但即使把所有的氮气和氧气都除去了,仍然存在着少量的残余气体。  相似文献   

14.
为什么     
太阳会不会燃烧尽? 地球上的生物是靠了太阳的能量才得以生存、发展的,没有了太阳,也就没有了一切。那么,光芒四射的太阳会不会有一天能量耗尽?那时太阳将会变成什么样子? 首先,让我们看一下太阳是个什么样的星体。 太阳的半径约有70万千米,是地球的109倍。它是一个巨大的气体团,其中3/4是氢气,1/4是氦。其他的元素都不到太阳整体的千分之一,加起来也只占2%。太阳中心的温度约1500万℃,表面温度约6000℃。 太阳为什么会在燃烧时放出耀眼的光芒呢?太阳的燃烧和地球上的物体的燃烧不一样。太阳是在中心部位进行氢原子变为氦原子的核聚变反应。在进行这种反应的同时,原子质量的一部分(约0.7%)变成了能量。太阳就是靠了这一部分能量才能放射出耀眼的光芒。  相似文献   

15.
《科学通报》2021,66(24):3111-3122
以可再生电能为能源, H2O为质子和电子源,温和条件下将氮气(N2)还原为氨气(NH3)将成为替代传统高能耗合成氨工艺(Haber-Bosch方法)的有效途径之一. N2分子的高反应活化能和析氢反应(hydrogen evolution reaction,HER)导致的产NH3速率和法拉第效率低,是目前电催化氮气还原(nitrogen reduction reaction, NRR)合成NH3面临的主要挑战.过渡金属基催化剂可通过反馈π电子过程吸附、活化N2分子,然而d轨道电子同样有利于质子吸附,进而促进HER竞争反应,导致合成NH3法拉第效率降低.碳基纳米材料因其出色的电导率、优异的化学稳定性以及可调的电子结构、形貌特征,成为当前电催化NRR合成NH3领域的研究热点.结合上述研究工作,本文从电催化NRR合成NH3机理出发,介绍了碳基纳米材料的种类和结构,重点综述了碳基纳米材料电催化NRR合成NH3活性提高策略,包括杂原子掺杂、单原子活性中心设计、缺陷工程.最后总结了该领域目前存在的问题与挑战以及未来发展趋势.  相似文献   

16.
张经坤 《科学通报》1983,28(2):91-91
自Schikorr提出了3Fe(OH_2)-→Fe_3O_4 2H_2O H_2↑反应之后,又有人对这个反应进行了研究。但上述报道都认为产生氢(H_2)的机理是不清楚的。Schrauzer推想氢气的产生一定和歧化过程中生成Fe~0有关。本文拟通过对无氧气氛下Fe(OH)_2歧化产物的穆斯堡尔研究,进一步研究Fe(OH)_2歧化过程中产生氢的机理。  相似文献   

17.
动态点击     
<正>土卫二具备生命所需全部条件不久前,参与NASA"卡西尼号"任务的科学家宣布,他们在土卫二表面发现了一种可供生命利用的化学能量形式,哈勃望远镜的研究人员也汇报了在土卫二表面发现喷出的羽状物的最新细节。科学家表示,土卫二海床中的地热活动产生的氢气正源源不断地涌入地下海,而氢气可作为生命的化学能来源。若地下海中存在微生物,便可将氢气与溶解在海水中的二氧化碳结合,从中获取能量。这一化学反应被称作"产甲烷作用",其副产品就是甲烷,而甲烷恰好是地球的生命之源。  相似文献   

18.
郭晓强 《自然杂志》2015,37(3):205-214
生物氧化是机体能量生成的基础,是生命得以维持的基本保证。细胞色素氧化酶的发现开启了现代生物氧化研究的序幕:一方面鉴定了大量氧化酶,从而充实了氧的利用特征;另一方面脱氢酶及辅助因子的鉴定进一步理解了生物氧化的本质为氢与氧结合生成水,同时释放能量促使ATP生成的过程。ATP合酶和Na+,K+-ATP酶的发现推动了对ATP生成和利用机制的研究。许多酶的催化都需要ATP的辅助,如泛素连接酶等,相关研究拓展了对细胞内物质代谢的认识。笔者通过生物氧化(亦称生物能学)发展过程的介绍而展现氧化酶和ATP酶的重要性。  相似文献   

19.
从核聚变中获取能量HaroldP.Furth著罗季雄译——从原子核聚变中获取能量的技术,可能在下世纪中叶得到广泛应用本世纪30年代,当科学家们开始懂得太阳及其他恒星由原子核聚变提供能量后,他们的想法就转向重视这种过程,起先当然在实验室中进行,最终则是...  相似文献   

20.
暗能量几乎占宇宙总物质能量的四分之三,但它的奥秘仍有待科学家们去探索——宇宙中被称为"暗能量"的一种神秘力量,发现已近10年了。在这期间,它就像一棵卧倒在地面的红杉树,横挡在科学家前进的道路上,使他们无法到达物理学中的那片神圣领地——关于物质及其基本作用力的根本理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号