首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
String theory has been the dominating research field in theoretical physics during the last decades. Despite the considerable time elapse, no new testable predictions have been derived by string theorists and it is understandable that doubts have been voiced. Some people have argued that it is time to give up since testability is wanting. But the majority has not been convinced and they continue to believe that string theory is the right way to go. This situation is interesting for philosophy of science since it highlights several of our central issues. In this paper we will discuss string theory from a number of different perspectives in general methodology. We will also relate the realism/antirealism debate to the current status of string theory. Our goal is two-fold; both to take a look at string theory from philosophical perspectives and to use string theory as a test case for some philosophical issues.  相似文献   

2.
Duality, the equivalence between seemingly distinct quantum systems, is a curious property that has been known for at least three quarters of a century. In the past two decades it has played a central role in mapping out the structure of theoretical physics. I discuss the unexpected connections that have been revealed among quantum field theories and string theories. Written for a special issue of Studies in History and Philosophy of Modern Physics.  相似文献   

3.
This paper argues that non-empirical physics, as paradigmatically embodied by string theory, is a conservative research program, in spite of appearances. John Wheeler's 1950s research program of "daring conservatism" is identified as another non-empirical research program that checks all the same boxes as string theory. This case study is used to further analyze the connection between conservatism and a non-empirical approach. It is concluded that the prime difficulty of non-empirical physics is not that it involves unbridled speculation, but that the lack of empirical input prevents it from achieving revolutionary progress.  相似文献   

4.
This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space—larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements ‘outside’ string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of ‘target space’, the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain why—even so—space is observed to have a determinate, large radius. The conclusion is that observed, ‘phenomenal’ space is not target space, since a space cannot have both a determinate and indeterminate radius: instead phenomenal space must be a higher-level phenomenon, not fundamental.  相似文献   

5.
String dualities establish empirical equivalence between theories that often look entirely different with respect to their basic ontology and physical structure. Therefore, they represent a particularly interesting example of empirical equivalence in physics. However, the status of duality relations in string physics differs substantially from the traditional understanding of the role played by empirical equivalence. The paper specifies three important differences and argues that they are related to a substantially altered view on the underdetermination of theory building.  相似文献   

6.
What have recently been dubbed two ‘miracles’ of general relativity—(1) that all non-gravitational interactions are locally governed by Poincaré invariant dynamical laws; and (2) that, in the regime of experimental practice in which curvature effects may be ignored, the local Poincaré symmetries of the dynamical laws governing matter fields coincide with the local Poincaré symmetries of the dynamical metric field—remain unaccounted for in that theory. In this paper, I demonstrate that these two ‘miracles’ admit of a natural explanation in one particular successor theory to general relativity—namely, perturbative string theory. I argue that this point has important implications when considering both the ‘chronogeometricity’ (that is, the object in question being surveyed by rods and clocks built from matter fields) and spatiotemporal status of the dynamical metric field in both general relativity and perturbative string theory.  相似文献   

7.
8.
The view that the fundamental kind properties are intrinsic properties enjoys reflexive endorsement by most metaphysicians of science. But ontic structural realists deny that there are any fundamental intrinsic properties at all. Given that structuralists distrust intuition as a guide to truth, and given that we currently lack a fundamental physical theory that we could consult instead to order settle the issue, it might seem as if there is simply nowhere for this debate to go at present. However, I will argue that there exists an as-yet untapped resource for arguing for ontic structuralism – namely, the way that fundamentality is conceptualized in our most fundamental physical frameworks. By arguing that physical objects must be subject to the ‘Goldilock's principle’ if they are to count as fundamental at all, I argue that we can no longer view the majority of properties defining them as intrinsic. As such, ontic structural realism can be regarded as the most promising metaphysics for fundamental physics, and that this is so even though we do not yet claim to know precisely what that fundamental physics is.  相似文献   

9.
This paper explores the legacy of the great French experimental physicist Victor Regnault through the example of Gabriel Lippmann, whose engagement with electrical standardization during the early 1880s was guided by Regnault's methodological precept to measure ‘directly’. Lippmann's education reveals that the theoretical practice of ‘direct’ measurement entailed eliminating extraneous physical effects through the experimental design, rather than, like physicists in Britain and Germany, making numerical ‘corrections’ to measured values. It also provides, paradoxically, exemplars of the qualitative theoretical practices that sustained Regnault's misguided ambition to avoid theory. By considering the largely negative reactions to Lippmann's proposals for selecting suitable electrical units and methods of measuring the ohm, this paper associates these theoretical practices with the ineffectual rhetorical strategies employed by Lippmann to promote his work, and thereby indicates that the practice of direct measurement was limited to French experimental physics. Whilst this result aligns readily with the existence of divergent nineteenth century British and German cultures of precision, it emerges from a very different disciplinary context in which the practice of precision electrical measurement developed independently of submarine telegraphy. This is because, as this paper illustrates, telegraphic engineering and experimental physics remained separate professions in France.  相似文献   

10.
This article examines the problem of the origins of the correspondence principle formulated by Bohr in 1920 and intends to test the correctness of the argument that the essential elements of that principle were already present in the 1913 “trilogy”. In contrast to this point of view, moreover widely shared in the literature, this article argues that it is possible to find a connection between the formulation of the correspondence principle and the assessment that led Bohr to abandon the search for a Planck-type theory. In fact, a thorough examination of Bohr’s works shows that the birth of this principle coincided with the depletion of a research program whose origins may date back to Bohr’s stay at the Rutherford’s laboratory (summer 1912). Finally, this article argues that original program of research was abandoned when it became clear that Planck’s quantum hypothesis for the harmonic oscillator was not an adequate support for the theoretical architecture of atomic physics; namely, there was evidence enough to justify a most drastic conclusion, according to Bohr: “I do not think that a theory of the Planck type can be made logical consistent”.  相似文献   

11.
Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that “quantum theory has no physical ontology and states no facts about physical objects or events”, and Fuchs et al. (2014, 752) similarly hold that “quantum mechanics itself does not deal directly with the objective world”. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace a hidden variables-view, in tension with their original project. I here offer a neo-Kantian alternative. In particular, I will show how constitutive elements in the sense of Reichenbach (1920) and Friedman (1999, 2001) can be identified within quantum theory, through considerations of symmetries that allow the constitution of a ‘quantum reality’, without invoking any notion of a radically mind-independent reality. The resulting conception will inherit elements from pragmatist and ‘QBist’ approaches, but also differ from them in crucial respects. Furthermore, going beyond the Friedmanian program, I will show how non-fundamental and approximate symmetries can be relevant for identifying constitutive principles.  相似文献   

12.
In a paper published in 1939, Ernest Nagel described the role that projective duality had played in the reformulation of mathematical understanding through the turn of the nineteenth century, claiming that the discovery of the principle of duality had freed mathematicians from the belief that their task was to describe intuitive elements. While instances of duality in mathematics have increased enormously through the twentieth century, philosophers since Nagel have paid little attention to the phenomenon. In this paper I will argue that a reassessment is overdue. Something beyond doubt is that category theory has an enormous amount to say on the subject, for example, in terms of arrow reversal, dualising objects and adjunctions. These developments have coincided with changes in our understanding of identity and structure within mathematics. While it transpires that physicists have employed the term ‘duality’ in ways which do not always coincide with those of mathematicians, analysis of the latter should still prove very useful to philosophers of physics. Consequently, category theory presents itself as an extremely important language for the philosophy of physics.  相似文献   

13.
The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation—a mathematical transformation that takes the time variable t to negative imaginary time—it—was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a “translation manual” between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in developments in pure mathematics as well as theoretical physics is another feature that this case study has in common with dualities in string theory.  相似文献   

14.
This paper examines historic appraisals of string theory to develop a less abstract understanding of the string theory controversy and assessment in non-empirical physics. This historical approach reveals several points of conflict in the controversy, each centring on a constraint. By proceeding stepwise through these constraints, I reveal the role that constraints played in determining divergent assessments of string theory. Rather than disagreement between two competing methods, a level of agreement is found amongst those critical and supportive of string theory as to the commitment to the relevant constraints, but disagreement as to the sufficiency of consistency, the path to background independence and a non-perturbative formulation, and how to interpret the significance of applications. Furthermore, the string theory community itself is shown to be divided in its commitment to the necessity of uniqueness and the legitimacy of anthropic reasoning. These varied assessments, guided by considerations of constraints, have informed divergent claims as to the past and future fertility of string theory. These are claims as to the value of string theory in guiding research in quantum gravity: claims as to whether string theory has and will be valuable as a means rather than an end.  相似文献   

15.
During the first twenty-four years after the discovery of superconductivity many attempts to derive an adequate theory failed, mainly because the problem was not formulated quite correctly. In this paper we investigate certain questions related to the heuristic role of mathematics in the appropriate formulation of the problem that had to be solved and the development of a theory which was hindered by theoretical superstitions.  相似文献   

16.
The universal acceptance of atomism in physics and chemistry in the early 20th century went along with an altered view on the epistemic status of microphysical conjectures. Contrary to the prevalent understanding during the 19th century, on the new view unobservable objects could be ‘discovered’. It is argued in the present paper that this shift can be connected to the implicit integration of elements of meta-empirical theory assessment into the concept of theory confirmation.  相似文献   

17.
James Geikie's Great Ice Age (1874) first presented to the geological public the Pleistocene. modern interpretation of alternating mild and cold periods during the Though it was supported by geological evidence, Geikie's view of the Ice Age was based on a theoretical framework supplied by the climatic physics of James Croll. Mid-nineteenth-century British geologists had encountered great difficulty in making sense out of the varied and complicated glacial deposits, or ‘drift’, and had formulated the ‘iceberg’ theory to account for the apparent chaos of the drift, an explanation which discouraged its stratigraphic study. The reaffirmation of faith in continental glaciation by several Scottish geologists in the 1850s brought with it a belief in an eventful Pleistocene, but it remained difficult to discover the events of Ice Age history from study of the glacial deposits. In 1864 Croll presented a detailed climatic history of the Ice Age deduced from astronomy and physical geography. By 1871 James Geikie was using Croll's scheme of Ice Age history as the basis for his impressive synthesis of Pleistocene data from throughout the world.  相似文献   

18.
This work outlines the novel application of the empirical analysis of causation, presented by Kutach, to the study of information theory and its role in physics. The central thesis of this paper is that causation and information are identical functional tools for distinguishing controllable correlations, and that this leads to a consistent view, not only of information theory, but also of statistical physics and quantum information. This approach comes without the metaphysical baggage of declaring information a fundamental ingredient in physical reality and exorcises many of the otherwise puzzling problems that arise from this view-point, particularly obviating the problem of ‘excess baggage’ in quantum mechanics. This solution is achieved via a separation between information carrying causal correlations of a single qubit and the bulk of its state space.  相似文献   

19.
ABSTRACT

Robert Hooke’s development of the theory of matter-as-vibration provides coherence to a career in natural philosophy which is commonly perceived as scattered and haphazard. It also highlights aspects of his work for which he is rarely credited: besides the creative speculative imagination and practical-instrumental ingenuity for which he is known, it displays lucid and consistent theoretical thought and mathematical skills. Most generally and importantly, however, Hooke’s ‘Principles?…?of Congruity and Incongruity of bodies’ represent a uniquely powerful approach to the most pressing challenge of the New Science: legitimizing the application of mathematics to the study of nature. This challenge required reshaping the mathematical practices and procedures; an epistemological framework supporting these practices; and a metaphysics which could make sense of this epistemology. Hooke’s ‘Uniform Geometrical or Mechanical Method’ was a bold attempt to answer the three challenges together, by interweaving mathematics through physics into metaphysics and epistemology. Mathematics, in his rendition, was neither an abstract and ideal structure (as it was for Kepler), nor a wholly-flexible, artificial human tool (as it was for Newton). It drew its power from being contingent on the particularities of the material world.  相似文献   

20.
‘Holographic’ relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard ׳t Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic ‘AdS/CFT’ duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton׳s law of gravitation can be related holographically to the ‘thermodynamics of information’ on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde׳s scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号