首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在对现有的概率矩阵分解算法研究的基础上,针对其中只使用评分信息来做预测存在较大误差的问题,提出了一种结合用户相似度的社会化推荐算法(SRUS).首先,以概率矩阵分解算法(PMF)为基础,结合用户相似度信息进行建模;其次,使用潜在特征空间将评分矩阵和相似度矩阵关联到一个统一的框架中;最后,对这2个矩阵进行矩阵分解,实现算法的优化推荐.将这一算法与PMF算法进行比较,实验表明,SRUS算法在数据稀疏性、冷启动和精确性方面具有更优的效果.  相似文献   

2.
Slope One 协同过滤算法被广泛应用于个性化推荐系统中。标签是一种描述项目特性的重要形式,针对Slope One 算法推荐精度不足的问题,将标签信息融合到 Slope One 算法当中。同时参考 k 近邻算法思想,选取阈值过滤后的 k 近邻项目参与平均评分偏差计算,提高计算效率的同时增加预测精度。使用评分相似度和标签相似度作为权重修正线性回归模型。通过线性加权融合预测结果,进一步提升推荐质量。将算法应用于 MovieLens 数据集,与传统加权 Slope One 算法相比,平均绝对偏差下降4.8%,召回率和准确率分别提高32.1%和26.3%。  相似文献   

3.
为解决传统的协同过滤算法不能准确理解用户的喜好,影响推荐准确率和推荐效果,提出基于社会化标签语义相似度的协同过滤算法.算法以标签语义相似度为基础,将项目资源和相关标签的语义信息纳入,显著提高了推荐系统的预测性能.研究结果表明:与以具体评分数据为基础的算法相比,该算法较好地解决了词相似度和句子相似度计算问题,推荐准确度和性能较以往的协同过滤算法有明显提高,改善了推荐效果.  相似文献   

4.
针对传统协同过滤推荐方法中用户评分信息稀疏导致推荐准确度不高的问题,提出融合用户信任度的概率矩阵分解推荐算法.该算法综合用户间的联合评分项以及非联合评分项,利用KL散度得到用户信任度排名,使得相似用户间的特征向量更加接近,并在概率矩阵分解过程中维持这种关系.最后在MovieLens 1M和Epinions数据集上采用三...  相似文献   

5.
针对传统协同过滤推荐数据稀疏会影响推荐质量,以及项目最近邻居集的计算忽略用户多兴趣及提高推荐的准确度问题,该文采用混合模型改进了相似性度量计算,综合Pearson相关系数与修正余弦相似性,提出了一种基于混合相似度的用户多兴趣推荐算法.实验表明:该推荐方法的相似度计算更高效,不仅提高推荐准确率,而且使用户有更好的推荐体验.  相似文献   

6.
用户相似度计算的合理性直接影响到协同过滤推荐的效果。提出了一种基于时序行为关系的用户消费网络图构建方法,通过定义用户间非对称相似度计算方法,确定用户间的初始相似度矩阵,然后利用概率矩阵分解的方法重构用户的相似度矩阵,挖掘潜在的用户近邻,将近邻关系应用到目标用户的项目推荐中,同时提出了基于时序行为关系和矩阵分解的协同过滤推荐框架结构。在实际数据集上对具体参数进行实验,并和其他方法进行了比较。实验结果表明,该方法可以有效提高协同过滤推荐效果。  相似文献   

7.
针对目前虚拟协作社区中重视交互行为研究,缺乏协作行为研究的问题,从项目和协作者的角度出发研究社区的标签关系,提出根据协作者与项目的发生关系和项目标签集合获取基于协作者的标签共生信息,并用该共生信息来计算标签之间相似度,然后提出一种新的协作者工作偏好模型。结合协作者工作偏好和标签相似度研究协作者之fg的关系,以及协作者与项目之间的关系,预测可能参与项目的协作者,提出协作者推荐算法。通过使用开源社区www.codeplex.com的数据进行实验,并与其他推荐算法进行比较,证明本文提出的推荐算法能较好地应用于协作者推荐。  相似文献   

8.
以微博用户推荐算法中相似度计算为研究对象,根据微博用户关注信息的特点,分析了关注用户的流行度的不同程度,以及这种程度差异对相似度计算产生的影响,在此基础之上提出了一种加入流行度制衡因子的相似度计算方法.可通过流行度制衡因子,在计算用户相似度时,适度减少(增加)流行度偏高(偏低)的用户对计算结果的影响.实验结果表明:加入流行度制衡因子的用户相似度计算具有更好的推荐效果.  相似文献   

9.
协同过滤算法为推荐系统提供了一种方法,但传统的协同过滤方法推荐精度低.提出一种考虑用户评分相似性的协同过滤算法,通过在皮尔逊相关系数中加入项目数量相似度和用户评分相似度两个因素来计算用户间的相似度,以产生更合理的邻居用户,提高推荐精度,完成对用户的推荐,同时邻居用户的选取采用动态阈值设定方法.实验结果表明,所提出的算法相比传统方法选择出的邻居更为精确,推荐质量更高.  相似文献   

10.
非负矩阵分解(NMF)是一种有效的数据降维方法,广泛应用于图像聚类等领域.然而,NMF不能捕获数据固有的几何结构,所以基于图的非负矩阵分解被提出.基于图的算法大多使用K-近邻来构造相似度图.由于数据中的异常值和错误特征,直接构造图是不准确的.针对上述问题,提出了基于学习一致性相似度矩阵的图非负矩阵分解方法.该方法首先通...  相似文献   

11.
12.
协同过滤技术作为目前最常见的个性化推荐技术之一,被广泛认可和应用.作为基于内容的算法执行方式,协同过滤在准确性上具有相当的优势.该算法的核心问题是相似度的计算.本论文介绍了传统协同过滤算法,并对原有的相似度公式进行了优化,使得相似度计算更具有准确性.实验表明,文中提出的优化方法在推荐精度上有显著提高,降低了平均绝对误差(Mean Absolute Error,MAE).  相似文献   

13.
为了解决目前推荐方法中用户相似度计算不准确、推荐准确率较低的问题,建立一种基于用户偏好度的双极协同过滤推荐算法。计算用户间共同项目数量,当共同项目数量小于设定阈值时,选择用户、项目、项目属性特征构建用户对项目、属性的双极特征向量,表示用户的喜欢程度和讨厌程度。通过对双极特征向量进行加权计算,得到用户间相似度。在标准的MovieLens数据集上验证该算法。实验结果表明,该文算法的平均绝对误差(MAE)和均方根误差(RMSE)较其他算法降低了约9%,平均分值排名(R)降低了约10%。  相似文献   

14.
针对基于社交网络的事件推荐覆盖性和准确性不够高的问题,提出了基于用户相似度Si-user Walker算法.该算法利用基于事件的社交网络特征,将线上用户群组数据抽象为图,以重启随机游走算法为基础,改变了传统的完全基于图的拓扑结构进行随机游走的策略.根据地理位置划分事件类型,提出了新的用户相似度计算方法,然后根据用户相似度矩阵作为随机游走的转移概率,既保留了图的传递性,又保证了图节点游走的真实性.与其他推荐算法在真实的数据集上实验表明,该算法在均方根误差、准确率及覆盖率上均得到提升.  相似文献   

15.
网页正文提取是WEB挖掘的重要步骤。传统网页正文提取方法都需要经过分块这一步骤之后来识别网页正文块,提出了利用行文本之间的内容相似度和标签相似度结合的方法来提取网页正文。该算法避免了传统网页提取算法的分块步骤,在规范网页之后,先提取网页的最大文本行,然后计算每行文本与最大行的内容相似度和标签相似度,再结合内容相似度与标签相似度来提取网页正文。实验中,利用随机抽取的网页进行了测试,其测试精度接近95%,表明该算法在实际中是有效的。  相似文献   

16.
为了克服推荐算法的静态性缺点,提出融合相似用户和信任关系的动态反馈协同过滤推荐算法.该算法用动态因子融合相似用户和信任关系,动态因子初始取随机数,根据用户反馈和系统预测的误差建立正负反馈机制.按照反馈类型,选择增值或衰减函数适当调整动态因子,以便系统更好预测用户评分.在真实数据集Epinions上的实验表明,采用正负反馈的动态融合算法,不仅克服了静态性缺点,而且较基于相似用户或者信任关系的推荐进一步提高了推荐准确率.  相似文献   

17.
18.
社交网络中存在密切的朋友圈子关系,而目前社交网络由于用户推荐方法单一,出现用户流失、朋友圈不明确等问题,通过用户标签的语义相似度的计算,对用户与其关注者之间的关系程度进行分析并按兴趣分类,根据分类进行关联关注用户的再推荐。通过实验验证了分类的有效性,提高了推荐效率。  相似文献   

19.
针对绝大多数用户消费习惯对地理位置的敏感性,以及推荐过程中的"长尾效应",提出融合位置信息和物品流行度的协同过滤算法。对传统的协同过滤算法作出2点改进:第一,将用户兴趣偏好与位置偏好相结合,提出一种新的基于地理位置的用户相似度计算方法;第二,在预测评分时,引入物品流行度权重,合理地调整流行物品和长尾物品的推荐期望值。使用Foursquare数据集作为实验数据集,与相关算法进行对比实验。结果表明,改进算法能有效提高推荐的精度和推荐结果的多样性。  相似文献   

20.
传统的推荐算法一定程度上为学习者提供了自适应的学习服务,但忽略了用户的学习兴趣偏好,难以提供学习者满意的推荐服务.为了提高学习推荐的效率,对用户的偏好进行进算,根据兴趣偏好对基本用户进行聚类,然后根据用户之间的兴趣相似性初步预测目标用户的兴趣度,进而给用户推荐兴趣度较高的学习服务.实验结果表明,该方法可显著地提高推荐质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号