首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于局部线性嵌入(LLE)非线性降维的多流形学习   总被引:6,自引:0,他引:6  
为了研究多人脸多表情数据集的多流形学习问题,提出了一种基于局部线性嵌入(LLE)算法的多流形学习方法.对于分布在不同流形上的高维数据,该方法在降维的同时首先对数据集进行非监督的聚类,然后分析每一类数据的低维流形的本质维数以及流形空间的构成,聚类及流形空间的确定是通过对LLE降维的结果进行分析而完成的,计算复杂度小.在Cohn-Kanade人脸表情数据库上的表情识别实验表明,该方法在多人脸多表情流形的学习中优于基本的LLE算法,表情的识别率提高了20%~40%.  相似文献   

2.
利用局部线性嵌入的模态识别   总被引:3,自引:0,他引:3  
提出了一种新的利用局部线性嵌入的模态识别方法。该方法以流形学习为理论基础,从提取结构的几何或固有特征出发,以系统结构的响应数据为分析对象,可识别出结构的模态参数。该方法的基本思想是,将结构的响应看作一个高维数据集,将系统的模态看作高维数据集的本质结构与固有特征,然后通过求解数据的低维嵌入进行模态参数识别。圆柱壳仿真结果表明:提出的利用局部线性嵌入的模态识别方法能够有效地进行模态参数识别;随着阻尼系数的增加,对于贡献量较大的模态,利用局部线性嵌入的识别效果优于基于主成分分析的识别效果。  相似文献   

3.
针对基于能量耗损的齿轮故障模式识别问题,将监督学习与局部主成分分析结合,提出了一种改进的能有效提取数据低维流形结构与分类特征的局部线性嵌入算法.然后,分析了齿轮摩擦学系统能量耗损与能量耗损的故障模式识别方法.最后,以齿轮箱能量监测实验台为例,获取不同齿轮故障下输入能量耗损功率的变化,应用改进的局部线性嵌入算法进行故障的功率耗损降维与模式识别,通过多类支持向量机分类的准确率来判断分类的效果.研究表明,改进的局部线性嵌入算法有较高的识别率,是一种有效的齿轮能量耗损故障模式识别方法.  相似文献   

4.
针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors, SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.973 4,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.  相似文献   

5.
核局部线性嵌入法是一个优异的流形学习方法,对于非线性高维数据的降维问题,具有较好的效果。但是算法本身是一个无监督学习方法,对于模式分类等有监督学习问题效果不是很好。通过分析监督学习问题的机理,提出了一种有监督的核函数局部线性嵌入算法,数值实验证明算法对于有监督学习问题,具有较好的效果。  相似文献   

6.
随着计算视觉技术的发展,面向视频的人脸识别在现实生活中应用愈加广泛,作用愈加重要,对识别的准确性要求也越高.面对视频这样的高维度数据,如何进一步提高人脸识别的准确性是该领域的一个研究热点.本文提出一种面向视频数据的改进的局部线性嵌入算法,通过构造样本间的协方差矩阵,将马哈拉诺比斯距离和像素距离相结合,提出了一种新的样本间的相似性度量方法,该方法充分利用了视频帧间信息的关联性.并在VidTIMIT数据集上进行识别效果的测试,同时与其它几类识别方法的实验结果进行对比.实验结果表明,本文提出的算法的识别率要高于已有的局部线性嵌入算法和其它方法.  相似文献   

7.
提高人脸识别算法的识别率,提出一种基于半监督局部线性嵌入(Semi-Supervised Locally Linear Embedding,SSLLE)的人脸图像识别方法。针对局部线性嵌入(Locally Linear Embedding,LLE)算法非监督学习的缺陷,引入半监督思想,在构造邻域的时候利用部分样本的标签信息来重新调整距离矩阵;使用调整后的距离矩阵进行线性重建从而实现数据降维。在Yale和ORL人脸库上的实验结果表明,能有效的提高人脸识别的性能。  相似文献   

8.
视频轨迹为视频图像的自动化分析提供了新的工具.为此,提出了基于时空扩展局部线性嵌入的视频轨迹描绘算法.该算法首先将视频片段分割成连续的视频子序列,利用视频子序列的非平凡k近邻来捕获具有时空约束的相似视频序列模式;然后在每个视频子序列与其非平凡k近邻之间构造重构权;最后利用重构权计算视频子序列的低维嵌入向量,从而获得视频...  相似文献   

9.
为解决传统流形学习方法在轴承数据的非欧氏空间中特征提取时的不佳表现,提出引入黎曼流形学习方法.在黎曼流形的框架下,利用原始数据集构造出黎曼流形,并基于此流形提出了黎曼图嵌入特征提取方法,通过对局部结构编码实现初步降维.然后,在低维黎曼流形的基础上融合主成分分析算法(PCA:Principal Components Analysis)和线性判别分析算法(LDA:Linear Discriminant Analysis)设计分类器并对轴承数据进行了聚类.最后,通过在两个轴承数据集上的实验,分析了该方法提取特征的能力.实验结果表明,与现有的故障诊断方法相比,该方法具有较强的故障诊断能力.  相似文献   

10.
针对局部线性嵌入算法使用欧氏距离计算非对齐样本相似性时, 受数据位置差影响较大, 导致度量精度较低, 影响算法特征提取精度的问题, 提出一种基于信息熵度量的局部线性嵌入算法. 首先利用信息熵统计样本特征间的混乱程度, 提高划分局部邻域的准确性; 然后建立局部重构模型, 挖掘出流形的本质结构; 最后利用局部结构构建低维重构模型, 以获得样本的显著特征. 通过在轴承数据集上的实验证明了该算法在特征提取方面的有效性.  相似文献   

11.
由于特征提取是数据挖掘的基础工作,而其质量对挖掘结果有很大影响,为此针对局部线性嵌入(LLE:Locally Linear Embedding)算法并未考虑同一数据的不同特征之间的相关性,不能较好地保留时间信号的主要形态趋势,提出了基于特征相关性的局部线性嵌入(CC-LLE:Local Linear Embedding Algorithm Based on Characteristic Correlation)算法,并应用于轴承故障诊断。针对轴承故障信号周期性特点,该算法在特征提取阶段对数据进行分段操作,选取各分段上的标准偏差作为特征,构造原始数据的特征样本集,从而有效提取鉴别特征。通过在轴承数据集上进行实验验证了该算法在特征提取方面的有效性。  相似文献   

12.
为解决现有局部线性嵌入算法不适合处理非均匀分布数据和未利用距离远点信息的问题,首先引入测地线距离,以便能利用远点信息;然后使用调和平均规范化构造调和平均测地线核矩阵,使算法能更好地处理分布不均匀数据并具有鲁棒性。在UCI数据集上的实验结果表明,改进后的算法能够取得比局部线性嵌入算法更好的降维效果。  相似文献   

13.
流形学习方法是一种新型的非线性降维方法,它可以有效地对具有内在流形形式的非线性高维数据进行维数约简.目前,流形学习已被成功应用于聚类、可视化等数据挖掘领域,表现出卓越的性能.首先讨论了流形学习的研究现状,然后介绍了这一领域中影响最大的2种算法:局部线性嵌入算法和等距特征映射算法.  相似文献   

14.
流行学习是一种新的数据降维方法,能揭示数据的内在变化规律,其目标是发现嵌入在高维数据空间中的低维流形结构,并给出一个有效的低维表示。目前流形学习以其出色的数据约简与可视化能力得到了越来越多模式识别与机器学习工作者的重视。本文介绍了一些常用的流形学习算法,分析了这些算法的优缺点,并利用流形学习中的局部线性嵌入(LLE)算法于头部姿势估计,取得了较好的识别效果。  相似文献   

15.
一种自适应局部线性嵌入与谱聚类融合的故障诊断方法   总被引:3,自引:1,他引:3  
针对数据维数高、非线性且从高维观测空间分析数据模式困难的问题,将改进的流形学习算法引入到数据聚类中,提出了一种结合自适应局部线性嵌入和递归调用规范切融合的新方法.采用自适应局部线性嵌入对原始数据进行非线性降维,应用递归调用规范切对低维空间数据进行聚类,通过对3组UCI标准测试数据集的仿真实验表明,新方法能够将高维数据有效地映射到低维本质空间,克服了传统方法对数据集结构的依赖性,从而显著提高了谱聚类算法分类的准确性和稳定性.同时,对于田纳西-伊斯曼过程的数据实验,表明了该方法对故障模式识别的可行性和有效性.  相似文献   

16.
空间听觉重建中,头相关传输函数(head-related transfer function,HRTF)庞大的数据量是影响虚拟声源合成效率的主要因素之一.为了减少HRTF的数据存储,提出一种局部线性嵌入(locally linear embedding,LLE)空间听觉重建方法.通过LLE对高维HRTF数据进行降维,在低维数据空间提取与方位感知相关的特征,然后利用聚类算法进行分类,得到特征HRTF,而其余非特征HRTF则可以利用特征HRTF通过改进插值算法进行重构.与现有的主成分分析法(principal component analysis,PCA)相比,利用LLE降维后的数据保留了更多的感知信息,利用HRTF数据间的内在关系,对插值后的数据进行修正,可减少重建误差.仿真结果表明,该方法能够有效地减少HRTF的存储数据量,有利于提高虚拟声源的合成效率.  相似文献   

17.
深入探讨了流形学习算法中的局部线性嵌入算法(Locally Linear Embedding,简称LLE),在此基础上提出有监督学习的LLE算法,并把它应用于人脸表情识别中,只需构造简单的最小距离分类器,就能取得较好的识别率.  相似文献   

18.
一种面向分类的核局部线性嵌入算法   总被引:2,自引:0,他引:2  
局部线性嵌入算法(LLE)已被广泛运用于模式分类,但它存在两个缺点。首先LLE是一种无监督学习方法,没有很好地利用类别信息;其次,LLE算法假设数据在局部上的分布是线性的,如数据非线性分布则效果有限。对此,提出了一种解决分类问题的核局部线性嵌入算法。利用KLLE算法的思想寻找样本的内在流形分布,并通过重构误差来判定该样本的类别。所提方法考虑了样本的类别信息,也适合于处理局部非线性分布的数据。在Yale人脸库的实验结果验证了其有效性。  相似文献   

19.
提出了一种多流形局部线性嵌入的流形学习算法,为每个类的流形学习过程设计了一种监督的近邻点选择方法,将流形-流形距离作为度量指标,搜索最优的低维空间.在视频追踪算法中对外部数据库进行图像训练预处理,为人脸检测建立级联分类器,利用均值粒子滤波器结合跟踪校正策略对人脸图像实时跟踪,采用多流形训练的结果从视频流的人脸集中检测出追踪的目标人脸.仿真实验结果表明本算法对不同的数据集均获得了较高的检测率与较高的计算效率.  相似文献   

20.
利用非线性流形学习的轴承早期故障特征提取方法   总被引:8,自引:0,他引:8  
针对早期故障微弱特征难以提取的问题,提出了一种基于非线性流形学习的滚动轴承早期故障特征提取方法.在由时域指标和小波频带能量组成的原始特征空间中,结合局部切空间排列学习算法的特点,采用散布矩阵分类测度指标,实现了局部邻域的优化选取,从而提取出最优的敏感故障特征.通过实例应用,表明该方法有效地克服了主分量分析和非线性核主分量分析方法的不足,提取的融合特征敏感性更好,从而提高了故障模式的分类性能,实现了轴承的早期故障诊断.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号