首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neurons are highly specialised cells with a large bioenergetic demand, and so require a healthy mitochondrial network to function effectively. This network is compromised in many neurological disorders, in which damaged mitochondria accumulate. Dysfunctional mitochondria can be removed via an organelle-specific autophagic pathway, a process known as mitophagy. The canonical mitophagy pathway is dependent on the actions of PINK1 (PTEN-induced putative kinase 1) and Parkin and has been well studied in immortalised cells and cultured neurons. However, evidence for a role of this mitophagy pathway in the brain is still limited, and studies suggest that there may be important differences in how neurons respond to mitochondrial damage in vitro and in vivo. Here, we first describe the evidence for a functional PINK1/Parkin mitophagy pathway in neurons, and review how this pathway is affected in disease models. We then critically evaluate the literature by comparing findings from in vitro models and more recent in vivo studies in flies and mice. The emerging picture implicates that alternative mitophagy pathways operate in neurons in vivo. New mouse models that employ fluorescent biosensors to monitor mitophagy in vivo will be instrumental to understand the relative role of the different clearance pathways in the brain under physiological and pathological conditions.  相似文献   

2.
3.
Molecular oxygen (O2) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O2 concentration, state of decreased O2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.  相似文献   

4.
New dentate granule cells are continuously generated from neural progenitor cells and integrated into the existing hippocampal circuitry in the adult mammalian brain through an orchestrated process termed adult neurogenesis. While the exact function remains elusive, adult neurogenesis has been suggested to play important roles in specific cognitive functions. Adult hippocampal neurogenesis is regulated by a variety of physiological and pathological stimulations. Here we review emerging evidence showing that HIV infection and several drugs of abuse result in molecular changes that may affect different aspects of adult hippocampal neurogenesis. These new findings raise the possibility that cognitive dysfunction in the setting of HIV infection or drug abuse may, in part, be related to alterations in hippocampal neurogenesis. A better understanding of how HIV and drugs of abuse affect both molecular and cellular aspects of adult neurogenesis may lead to development of more effective therapeutic interventions for these interlinked epidemics. Received 6 February 2007; received after revision 26 March 2007; accepted 25 April 2007  相似文献   

5.
Cancer cell metabolism is characterized by limited oxidative phosphorylation in order to minimize oxidative stress. We have previously shown that the flavonoid flavone in HT-29 colon cancer cells increases the uptake of pyruvate or lactate into mitochondria, which is followed by an increase in O2−.. production that finally leads to apoptosis. Similarly, a supply of palmitoylcarnitine in combination with carnitine induces apoptosis in HT-29 cells by increasing the mitochondrial respiration rate. Here we show that flavone-induced apoptosis is increased more than twofold in the presence of palmitoylcarnitine due to increased mitochondrial fatty acid transport and the subsequent metabolic generation of O2−. in mitochondria is the initiating factor for the execution of apoptosis. Received 12 August 2005; received after revision 12 October 2005; accepted 14 October 2005  相似文献   

6.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   

7.
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.  相似文献   

8.
Summary A new aryl hydrazone structure with high insecticidal activity against the Australian sheep blowfly,Lucilia cuprina, was shown to have a higher activity as an uncoupler of oxidative phosphorylation in insect compared to mammalian mitochondrial preparations. This compound possesses the requirements of other uncouplers in its measured pKa and lipid solubility. However, when compared to a closely related structure with similar physicochemical properties, its insecticidal and insect mitochondrial uncoupling activities are greater and it exhibits decreased mammalian toxicity corresponding to this differential biochemical selectivity.Acknowledgment. We thank Mr K. Rihs for preparation of the hydrazones and Prof. Dr K.H. Büchel for supply of hydrazone III.  相似文献   

9.
While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain.  相似文献   

10.
A Boveris  A O Stoppani 《Experientia》1977,33(10):1306-1308
Homogenates from T. cruzi epimastigotes produced 3.4 pmoles H2O2/min 10(6) cells, as detected by the cytochrome c peroxidase assay. Addition of NADH or NADPH increased H2O2 production by a factor of 3 and 5, respectively. When supplemented with NADH and NADPH, the mitochondrial, microsomal and supernatant fractions produced H2O2, the soluble fraction and the mitochondrial membranes being apparently the main generators of H2O2. The epimastigote homogenates showed cyanide-sensitive superoxide dismutase activity, equivalent to 0.28 microgram bovine superoxide dismutase per mg homogenate protein.  相似文献   

11.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:1,自引:0,他引:1  
Cell plasticity and mesenchymal-epithelial interactions are regarded as a hallmark of embryonic development and are not believed to occur extensively in the adult. Recently, adult mesenchymal stem cells were reported to differentiate in culture into a variety of mature cell types, including epithelial cells. Progress in stem and progenitor cell biology and recognition of the unique properties of such cells may enable intelligent bioengineering design of replacement skin which allows regeneration to occur in vivo. Ideally, a scaffold-free environment which stimulates skin stem cells in situ to initiate cell signals that result in regeneration rather than scar formation is required. Various skin progenitor cell types are considered along with the signalling cascades that they affect. We also discuss a mammalian model of scar-free regeneration. Many of these mechanisms, if fully understood, could be harnessed after injury to perfectly restore the skin.  相似文献   

12.
The study of metabolic fuel provision and its regulation has reached an exciting stage where specific molecular events can be correlated with parameters of the organism's ecology. This paper examines substrate supply pathways from storage sites to locomotory muscle mitochondria and discusses ecological implications of the limits for maximal flux through these pathways. The relative importance of the different oxidative fuels is shown to depend on aerobic capacity. Very aerobic, endurance-adapted animals such as long distance migrants favor the use of lipids and intramuscular fuels over carbohydrates and circulatory fuels. The hypothesis of functional co-adaptation between oxygen and metabolic fuel supply systems allows us to predict that the capacity of several biochemical processes should be scaled with maximal oxygen consumption. Key enzymes, transmembrane transporter proteins, glucose precursor supply and soluble fatty acid transport proteins must all be geared to support higher maximal glucose and fatty acid fluxes in aerobic than in sedentary species.  相似文献   

13.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   

14.
W J Malaisse  A Sener 《Experientia》1988,44(7):610-611
D-glucose increases O2 uptake by cerebellum mitochondria. This effect is abolished by D-glucose-6-phosphate and D-mannoheptulose. It is proposed that the phosphorylation of D-glucose as catalyzed by bound hexokinase directly affects mitochondrial respiration.  相似文献   

15.
K Shikama 《Experientia》1985,41(6):701-706
The iron(II)-dioxygen bond in myoglobin and hemoglobin is a subject of wide interest. Studies range from examinations of physical-chemical properties dependent on electronic structure, to investigations of stability as a function of oxygen supply. Stability properties are of particular importance in vivo, since the oxygenated form is known to be oxidized easily to the ferric form, which cannot be oxygenated and is therefore physiologically inactive. Kinetic and thermodynamic studies of the stability of native oxymyoglobin have revealed a new feature in FeO2 bonding. In vivo, the iron center is always subject to a nucleophilic attack of the water molecule or hydroxyl ion, which can enter the heme pocket from the surrounding solvent, and thereby irreversibly displace the bound dioxygen from MbO2 in the form of O2- so that the iron is converted to the ferric form. A free energy diagram for the potential reactions of FeO2 visualizes myoglobin as a molecular structure that can provide in solution the delicate balance of kinetic and thermodynamic factors necessary to stabilize reversible oxygenation, as opposed to irreversible autoxidation to metmyoglobin.  相似文献   

16.
Several 4-(aminomethylisoxazolyl)-1,2-naphthoquinones inhibited growth and DNA synthesis in Trypanosoma cruzi and stimulated O2 uptake and O2-. generation by the parasite epimastigotes and their mitochondrial and microsomal membranes; these results support the idea that oxygen radicals play a role in quinone toxicity. Maximal effects on respiration and O2-. generation were observed with antimycin-inhibited cells. Similar results as well as stimulation of H2O2 production were obtained with Crithidia fasciculata despite the presence of catalase in this organism.  相似文献   

17.
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.  相似文献   

18.
Rapidly proliferating tumor cells easily become hypoxic. This results in acquired stability towards treatment with anticancer drugs. Here, we show that cells grown at 0.1 % oxygen are more resistant towards treatment with the conventionally used anticancer drugs doxorubicin and cisplatin. The stimulation of apoptosis, as assessed by the number of cells in the SubG1 fraction of the cell cycle, release of cytochrome c into the cytosol, activation of caspase-3, and cleavage of PARP, was markedly suppressed under low oxygen content or when hypoxia was mimicked by deferoxamine. Hypoxia or deferoxamine treatment was accompanied by stabilization of the hypoxia-inducible factor (HIF-1). The downregulation of HIF-1 using siRNA technique restored cell sensitivity to treatment under hypoxic conditions to the levels detected under normoxic conditions. In contrast to cisplatin or doxorubicin, α-tocopheryl succinate (α-TOS), a compound that targets mitochondria, stimulated cell death irrespective of the oxygen concentration. Moreover, under hypoxic condition cell death induced by α-TOS was even enhanced. Thus, α-TOS can successfully overcome resistance to treatment caused by hypoxia, which makes α-TOS an attractive candidate for antitumor therapy via mitochondrial targeting.  相似文献   

19.
There is huge potential for genetic exchange to occur within the dense, diverse anaerobic microbial population inhabiting the gastrointestinal tract (GIT) of humans and animals. However, the incidence of conjugative transposons (CTns) and the antibiotic resistance genes they carry has not been well studied among this population. Since any incoming bacteria, including pathogens, can access this reservoir of genes, this oversight would appear to be an important one. Recent evidence has shown that anaerobic bacteria native to the rumen or hindgut harbour both novel antibiotic resistance genes and novel conjugative transposons. These CTns, and previously characterized CTns, can be transferred to a wide range of commensal bacteria under laboratory and in vivo conditions. The main evidence that gene transfer occurs widely in vivo between GIT bacteria, and between GIT bacteria and pathogenic bacteria, is that identical resistance genes are present in diverse bacterial species from different hosts.  相似文献   

20.
Allometry of mammalian cellular oxygen consumption   总被引:3,自引:0,他引:3  
In the 1930s, Max Kleiber and Samuel Brody established that the interspecies correlation between mammalian body mass and metabolic rate (αM0.75) cannot be explained (solely) by whole body surface area (αM0.66) to volume ratios. Metabolic considerations must also be taken into account. Decreases in the proportion of visceral organ mass to whole body mass can account for some of the whole body metabolic differences. However, superimposed upon these anatomical differences, the metabolism of tissues and cells has been demonstrated to decrease with increasing body mass. These decreases in oxygen consumption rates (with increasing body mass) in cells and tissues can be explained by a decrease in ATP turnover and mitochondrial density and an increase in mitochondrial functional efficiency (decrease in proton leak). The majority of the proton leak differences reflect differences in mitochondrial inner membrane surface area. Indeed, liver metabolism correlates directly with liver mitochondrial inner membrane surface area. Apart from being a significant contributor (~25 %) to basal metabolism, mitochondrial proton leak is a major factor determining the differences in basal metabolism between mammals of different body mass. Received 31 May 2000; received after revision 2 October 2000; accepted 14 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号