共查询到16条相似文献,搜索用时 78 毫秒
1.
Fe-Nb-B纳米晶合金的结构与磁性 总被引:6,自引:1,他引:6
利用X射线衍射,差热分析及静态磁性测量,研究了退火温度对不同成分的非晶Fe Nb B合金纳米晶化行为和磁性的影响·实验发现:在纳米晶化过程的初期出现磁硬化,矫顽力与最大磁导率均呈现不同程度的恶化·在硼化物(Fe2B和Fe3B)相析出前,具有纳米结构的合金由α Fe固溶体和非晶基体相组成,呈现较佳的软磁特性·随纳米晶相体积分数增加而呈现的磁软化现象可解释为由于纳米晶粒间距的减少,交换耦合增强所致· 相似文献
2.
采用单辊甩带法制取了Fe-Si-B-Nb-Cu-Zr非晶合金薄带。利用X射线衍射仪(XRD)、差示扫描量热法(DSC)和振动样品磁强计(VSM)等手段对非晶态和晶化后的薄带的微观结构和磁性能进行了表征和测试,研究了Fe-Si-B-Nb-Cu-Zr合金中磁性能随着Zr含量以及退火温度变化的磁性机理。结果表明,在铸态Fe-... 相似文献
3.
铁基非晶合金的耐腐蚀性能对其在功能及结构材料领域的应用具有重要的工程意义。本文总结了微合金化元素添加、结构弛豫、纳米晶化、自由体积等对铁基非晶耐腐蚀性能的影响,对近年来铁基非晶耐腐蚀性能及其机理的研究进展进行了简要的介绍。 相似文献
4.
W-Fe合金在球磨过程中W相的组织变化 总被引:2,自引:1,他引:2
机械球磨是一种制备纳米材料的新工艺,近年来球磨法被进一步应用于制备非晶材料,该文在W50Fe50球磨研究的基础上,对W-Fe系合金进行了系统的研究,发现球磨时间小于400h时点阵常数保持不变,而当球磨时间超过400h时能够得到非晶,该合金系在整个成分范围内都可以实现纳米化,同时,W系合金在400h前后的塑性变形机制是不同的。 相似文献
5.
Fe—Cu—Mo—Si—B合金磁导率与温度的关系 总被引:1,自引:0,他引:1
研究了不同温度(370℃ ̄560℃)退火后的Fe73.5Cu1Mo3Si13.5B9合金初始磁导率μi与温度T的关系(μi ̄T曲线)。实验结果表明,退火温度Tα对μi ̄T曲张的形状有较大的影响。根据Tα可将μi ̄T曲线划分为3种类型,分析了这3种类型的μi ̄T曲线对应的合金相结构,讨论了μi随T变化的原因。 相似文献
6.
7.
概述了非晶合金的发展历史,并介绍了其主要性能,包括软磁性能(磁感应强度、磁导率、矫顽力和损耗)、力学性能(强度、硬度、韧性和耐磨性)及化学性能(耐腐蚀性);对比了单辊急冷法、双辊急冷法、悬滴熔化提取法及平面流铸法的优缺点;从合金的结构、热力学和动力学3个方面阐述了合金的非晶形成机理,总结了表征合金非晶形成能力的各种参数,主要包括熔化焓ΔH、熔化熵ΔS、约化玻璃转变温度Trg和黏度η等;展望了我国在非晶研究领域的应用前景. 相似文献
8.
研究了不同温度(370℃~560℃)退火后的Fe73.5Cu1Mo3Si13.5B9合金初始磁导率μi与温度T的关系(μi~T曲线).实验结果表明,退火温度Tα对μi~T曲线的形状有较大的影响.根据Tα可将μi~T曲线划分为3种类型,分析了这3种类型的μi~T曲线对应的合金相结构,讨论了μi随T变化的原因. 相似文献
9.
孟卫民 《甘肃教育学院学报(自然科学版)》2002,16(1):36-39
用射频反应溅射法制备了含Ti量高低不同的两种Fe-Ti-N合金薄膜,研究发现,沉积态低Ti含量的薄膜是α-Fe的多晶体,晶粒尺寸约20nm,沉积态高Ti含量的薄膜则是非晶结构,经适当热处理后,纳米晶α-Fe从中晶化生成,晶粒尺寸约10nm,和低Ti含量Fe-Ti-N薄膜相比,高Ti含量Fe-Ti-N薄膜显现出良好的软磁特性。 相似文献
10.
自1988年,Yoshizawa等人首先发现并命名为Finemet的铁基纳米晶合金后,该材料以其优异的软磁性能引起人们广泛的研究兴趣.本文对国内外研究文献进行综述,主要包括Fe73.5Cu1Nb3Si13.5B9纳米晶合金的制备及合成技术,微观结构特征,软磁特性等. 相似文献
11.
铁基非晶软磁合金及其晶化 总被引:22,自引:0,他引:22
用差热分析,X射线衍射,冲击法等方法研究了铁基非晶Fe72.5,Cu1Nb2V2SI13.5B9合金及其经不同温度退火处理后材料的结构和磁性。结果表明,合金经350℃退火,结构短程有序范围扩大,材料磁化比非晶合金容易;经520-560℃退火,α-Fe(Si)晶粒析出,得到微晶结构并具有优良的软磁性能,例如相对初始磁导率μi≥4.7×10^4,矫顽力Hc≤1.4A/m;在620℃以上退火,第二相Fe 相似文献
12.
研究了非晶 Fe_(77.3)Cu_(0.7)Nb_(1.3)Si_(13.5)B_(7.2)合金在400~600℃的温度范围内退火后磁性的变化。磁性测量结果表明,获得高磁导率的最佳退火温度约540℃左右;经 X 射线衍射分析证实:在该温度下退火,非晶态合金已经晶化并形成体心立方结构的α—FeSi 固溶体,其晶粒直径约10~15nm。这种超细晶粒的纳米晶是高磁导率的根源。 相似文献
13.
介绍纳米晶软磁合金的各向异性理论及FINEMET、NANOPERM、HITPERM等3种典型纳米晶软磁材料的研究进展,对于高温条件下使用的Fe Co基纳米晶软磁合金进行了讨论及展望. 相似文献
14.
研究了Fe78Si9B13,Fe73.5Cu1Nb3Si13.5B9,Fe74Cu1Mo2Nb1Si13B9三种非晶软磁合金在753~853K温度间等温退火1h后的纳米晶化行为和磁性,实验证明Cu,Nb和Mo元素的加入有助于提高晶化温度,稳定非晶组织.同时采用差热分析和X衍射仪分析了三种合金的晶化相,测量了其磁滞回线,结果表明1#,2#,3#合金分别在753K,813K,753K退火1h后可获得优良的综合软磁性能. 相似文献
15.
用Mo部分替代Fe-Cu-Nb-Si-B合金中的Nb而制备的Fe(73)Cu1Nb(1.5)Mo2Si(12.5)B(10)非晶合金,在500—620℃的温度范围内进行了等温退火处理.对退火后样品进行了磁性、微结构及物相研究,表明在530℃左右退火后具有最佳软磁性能.当退火温度大于600℃时,有Mo2FeB2及其它化合物析出从而使合金软磁性恶化.Mo与Nb一样有抑制晶粒生长,细化晶粒之作用. 相似文献
16.
系统地研究了纳米晶FeB合金颗粒的微波磁性.样品由机械合金化方法制备,X射线衍射实验表明合金颗粒是由尺寸约为10 nm左右的纳米微晶组成的.对FeB合金系列样品进行直流及微波磁性测量,结果表明:(1) 纳米晶 FeB合金颗粒的饱和磁化强度σS随B含量增加而单调下降.(2) FeB合金颗粒的磁损耗μ",在B含量约为5at.%时达到最大值,其有效复数磁导率为μ=3.06-j3.44,相应的内禀磁导率达μi=5.67-j12.11,当B含量超过10at.%时,磁损耗μ"显著降低.(3) 磁损耗μ"的峰值频率随B含量的增加,基本呈下降趋势.通过上述研究,我们得出如下结论:(1) 合理地选择纳米晶 FeB合金颗粒的成分,可以有效地提高磁损耗μ".(2) 金属间化合物FeB相的出现,对材料的微波磁性将产生不利影响. 相似文献