首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rancz EA  Ishikawa T  Duguid I  Chadderton P  Mahon S  Häusser M 《Nature》2007,450(7173):1245-1248
Understanding the transmission of sensory information at individual synaptic connections requires knowledge of the properties of presynaptic terminals and their patterns of firing evoked by sensory stimuli. Such information has been difficult to obtain because of the small size and inaccessibility of nerve terminals in the central nervous system. Here we show, by making direct patch-clamp recordings in vivo from cerebellar mossy fibre boutons-the primary source of synaptic input to the cerebellar cortex-that sensory stimulation can produce bursts of spikes in single boutons at very high instantaneous firing frequencies (more than 700 Hz). We show that the mossy fibre-granule cell synapse exhibits high-fidelity transmission at these frequencies, indicating that the rapid burst of excitatory postsynaptic currents underlying the sensory-evoked response of granule cells can be driven by such a presynaptic spike burst. We also demonstrate that a single mossy fibre can trigger action potential bursts in granule cells in vitro when driven with in vivo firing patterns. These findings suggest that the relay from mossy fibre to granule cell can act in a 'detonator' fashion, such that a single presynaptic afferent may be sufficient to transmit the sensory message. This endows the cerebellar mossy fibre system with remarkable sensitivity and high fidelity in the transmission of sensory information.  相似文献   

2.
R S Zucker  P G Haydon 《Nature》1988,335(6188):360-362
Neurons communicate by secreting a transmitter that excites or inhibits other neurons at synapses. The role of presynaptic membrane potential in triggering transmitter release is still controversial. In one view, presynaptic action potentials trigger the release by the entry of calcium ions into presynaptic terminals through voltage-dependent calcium channels. Calcium acts at high local concentrations at release sites near channel mouths to cause neurosecretion. An opposing view is that, in addition to elevating presynaptic calcium, presynaptic potential stimulates transmitter release by a distinct direct action. The relative importance of depolarization and calcium entry in neurosecretion cannot be determined because the two events are tightly linked. To delineate the roles of presynaptic potential and calcium entry in transmitter release, we have used nitr-5, a photolabile calcium chelator, and a voltage-clamp technique to control intracellular calcium and membrane potential independently at a synapse formed between cell bodies of cultured neurons of the fresh water snail Helisoma trivolvis. We found transmitter release occurred when presynaptic calcium levels were elevated to concentrations of a few micromolar, and that presynaptic voltage had no direct effect on neurosecretion.  相似文献   

3.
Glutamate is important in several forms of synaptic plasticity such as long-term potentiation, and in neuronal cell degeneration. Glutamate activates several types of receptors, including a metabotropic receptor that is sensitive to trans-1-amino-cyclopenthyl-1,3-dicarboxylate, coupled to G protein(s) and linked to inositol phospholipid metabolism. The activation of the metabotropic receptor in neurons generates inositol 1,4,5-trisphosphate, which causes the release of Ca2+ from intracellular stores and diacylglycerol, which activates protein kinase C. In nerve terminals, the activation of presynaptic protein kinase C with phorbol esters enhances glutamate release. But the presynaptic receptor involved in this protein kinase C-mediated increase in the release of glutamate has not yet been identified. Here we demonstrate the presence of a presynaptic glutamate receptor of the metabotropic type that mediates an enhancement of glutamate exocytosis in cerebrocortical nerve terminals. Interestingly, this potentiation of glutamate release is observed only in the presence of arachidonic acid, which may reflect that this positive feedback control of glutamate exocytosis operates in concert with other pre- or post-synaptic events of the glutamatergic neurotransmission that generate arachidonic acid. This presynaptic glutamate receptor may have a physiological role in the maintenance of long-term potentiation where there is an increase in glutamate release mediated by postsynaptically generated arachidonic acid.  相似文献   

4.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

5.
Glutamate spillover suppresses inhibition by activating presynaptic mGluRs   总被引:17,自引:0,他引:17  
Mitchell SJ  Silver RA 《Nature》2000,404(6777):498-502
Metabotropic glutamate receptors (mGluRs) found on synaptic terminals throughout the brain are thought to be important in modulating neurotransmission. Activation of mGluRs by synaptically released glutamate depresses glutamate release from excitatory terminals but the physiological role of mGluRs on inhibitory terminals is unclear. We have investigated activation of mGluRs on inhibitory terminals within the cerebellar glomerulus, a structure in which GABA (gamma-aminobutyric acid)-releasing inhibitory terminals and glutamatergic excitatory terminals are in close apposition and make axo-dendritic synapses onto granule cells. Here we show that 'spillover' of glutamate, which is released from excitatory mossy fibres, inhibits GABA release from Golgi cell terminals by activating presynaptic mGluRs under physiological conditions. The magnitude of the depression of the inhibitory postsynaptic current is dependent on the frequency of mossy fibre stimulation, reaching 50% at 100 Hz. Furthermore, the duration of inhibitory postsynaptic current depression mirrors the time course of mossy fibre activity. Our results establish that mGluRs on inhibitory interneuron axons sense the activity of neighbouring excitatory synapses. This heterosynaptic mechanism is likely to boost the efficacy of active excitatory fibres by locally reducing the level of inhibition.  相似文献   

6.
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.  相似文献   

7.
GABA and GAD immunoreactivity of photoreceptor terminals in primate retina   总被引:2,自引:0,他引:2  
Y Nishimura  M L Schwartz  P Rakic 《Nature》1986,320(6064):753-756
Within the vertebrate retina, two types of photoreceptor cells--the rods and cones--transduce visual signals and convey this information through synapses with bipolar and horizontal cells. Although the neurotransmitter at these first-order synapses has not been identified, electrophysiological studies suggest that it might be excitatory. In the present study, however, we have found photoreceptor terminals in the rhesus monkey retina which are immunoreactive with antibodies to either gamma-aminobutyric acid (GABA) or L-glutamic acid decarboxylase (GAD, an enzyme involved in the synthesis of GABA). In the perifoveal region of the retina, approximately 25% of presynaptic profiles having ultrastructural characteristics of either rod or cone terminals are immunoreactive with one or the other antibody. This evidence for a putatively inhibitory neurotransmitter in photoreceptor terminals challenges present understanding of retinal synaptic function.  相似文献   

8.
H Man-Son-Hing  M J Zoran  K Lukowiak  P G Haydon 《Nature》1989,341(6239):237-239
The mechanisms that underlie synaptic plasticity have been largely inferred from electrophysiological studies performed at sites remote from synaptic terminals. Thus the mechanisms involved in plasticity at the secretory sites have remained ill-defined. We have now used somatic synapses of cultured Helisoma neurones to directly assess presynaptic ion conductances and study the secretory apparatus. At these synapses we determined the actions of a modulatory neuropeptide, Phe-Met-Arg-Phe-NH2 (FMRFa), on the release of the neurotransmitter acetylcholine (ACh). Using voltage- and calcium-clamp techniques, we have demonstrated that FMRFa causes a presynaptic inhibition of ACh release by (1) reducing the magnitude of the voltage-dependent calcium current, and (2) regulating the secretory apparatus. The photolabile calcium cage, nitr-5 (refs 3-8), was dialysed into the presynaptic cell. In response to ultraviolet light, calcium was released from nitr-5 and ACh secretion was stimulated. Under conditions of constant internal calcium, FMRFa reduced the rate of ACh release. Thus we conclude that FMRFa reduces the influx of calcium during the action potential and decreases the sensitivity of the secretory apparatus to elevated internal calcium, thereby contributing to a presynaptic inhibition of transmitter release.  相似文献   

9.
N Yumoto  N Kim  SJ Burden 《Nature》2012,489(7416):438-442
Motor axons receive retrograde signals from skeletal muscle that are essential for the differentiation and stabilization of motor nerve terminals. Identification of these retrograde signals has proved elusive, but their production by muscle depends on the receptor tyrosine kinase, MuSK (muscle, skeletal receptor tyrosine-protein kinase), and Lrp4 (low-density lipoprotein receptor (LDLR)-related protein 4), an LDLR family member that forms a complex with MuSK, binds neural agrin and stimulates MuSK kinase activity. Here we show that Lrp4 also functions as a direct muscle-derived retrograde signal for early steps in presynaptic differentiation. We demonstrate that Lrp4 is necessary, independent of MuSK activation, for presynaptic differentiation in vivo, and we show that Lrp4 binds to motor axons and induces clustering of synaptic-vesicle and active-zone proteins. Thus, Lrp4 acts bidirectionally and coordinates synapse formation by binding agrin, activating MuSK and stimulating postsynaptic differentiation, and functioning in turn as a muscle-derived retrograde signal that is necessary and sufficient for presynaptic differentiation.  相似文献   

10.
Axoplasmic transport of muscarinic receptors   总被引:5,自引:0,他引:5  
P Laduron 《Nature》1980,286(5770):287-288
The reality of axoplasmic transport is widely accepted; various neutrotransmitters, enzymes, labelled proteins and peptides are known to move rapidly along the axons of different nerve fibres. In the terminals of sympathetic nerves, noradrenaline release is controlled by various regulatory mechanisms which imply the occurrence of presynaptic receptors. In this regard, there is considerable indirect physiological evidence for the existence of muscarinic cholinergic receptors in the sympathetic nerve endings; the stimulation by acetylcholine of such presynaptic receptors elicits an inhibitory effect on noradrenaline release. We not provide direct biochemical evidence for the occurrence in dog splenic nerve of muscarinic receptors which seem to move along the axon as suggested by their rapid accumulation on either side of a ligature.  相似文献   

11.
A Malgaroli  R W Tsien 《Nature》1992,357(6374):134-139
Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quantal responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.  相似文献   

12.
A A Herrera  A D Grinnell 《Nature》1980,287(5783):649-651
It has been postulated that the success with which a motor nerve terminal competes for synaptic connections or the ability of an axon to maintain sprouts may depend on the support each terminal receives from its coma, presumably in the form of some substance(s) synthesized there. The support received by each terminal may in turn depend on the total number of terminals maintained by that soma, namely, motor unit size. We show here that when motor unit size is experimentally decreased, transmitter release from the terminals is markedly enhanced. This is consistent with the view that the extent of support from the soma may also influence the effectiveness of synaptic transmission.  相似文献   

13.
Dopaminergic D-3 binding sites are not presynaptic autoreceptors   总被引:1,自引:0,他引:1  
S E Leff  I Creese 《Nature》1983,306(5943):586-589
Postsynaptic dopamine (DA) receptors have been classified biochemically and pharmacologically into two types: D-1 receptors mediate adenylate cyclase stimulation, demonstrating micromolar affinity for DA and butyrophenone antagonists; D-2 receptors mediate adenylate cyclase inhibition, demonstrating nanomolar affinity for DA and butyrophenone antagonists. D-1 receptors are labelled by 3H-thioxanthene antagonists, while D-2 receptors are labelled by both 3H-agonists and all 3H-antagonists. A third class of dopaminergic binding site, termed D-3, represents high-affinity 3H-agonist binding sites demonstrating low, micromolar, affinity for butyrophenones. In the rat striatum, D-3 sites were decreased 50% by 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA pathway, suggesting that such D-3 binding labels presynaptic DA autoreceptors on nigrostriatal terminals. However, nigrostriatal denervation produces a concomitant depletion of striatal DA. Here we demonstrate that a reserpine-induced depletion of DA produces a decrease in D-3 binding comparable to that seen with nigrostriatal denervation, independent of presynaptic terminal degeneration. This loss in binding, or that caused by 6-OHDA lesions, is recovered by preincubating the striatal membranes with DA or with the supernatant from control striatal membrane preparations. We therefore suggest that the loss of D-3 binding following 6-OHDA lesions results from the depletion of endogenous DA rather than the degeneration of terminals and their putatively associated autoreceptors.  相似文献   

14.
Nishimune H  Sanes JR  Carlson SS 《Nature》2004,432(7017):580-587
Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin beta2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to clustering of channels, which in turn recruit other presynaptic components. Perturbation of this interaction in vivo results in disassembly of neurotransmitter release sites, resembling defects previously observed in an autoimmune neuromuscular disorder, Lambert-Eaton myasthenic syndrome. These results identify an extracellular ligand of the voltage-gated calcium channel as well as a new laminin receptor. They also suggest a model for the development of nerve terminals, and provide clues to the pathogenesis of a synaptic disease.  相似文献   

15.
R E Marc  W L Liu 《Nature》1984,312(5991):266-269
Horizontal cells mediate lateral transmission of signals in the outer plexiform layer of the vertebrate retina, and are presumed to contribute to surround properties of photoreceptors and bipolar cells by chemical transmission. The cell bodies and dendrites of fish horizontal cells possess presynaptic specializations characteristic of conventional chemical synapses. Horizontal cell axon terminals have not so far been shown to contain presynaptic specializations nor have the targets of the somatic and dendritic synapses been fully characterized. Using electron microscope autoradiography of retinas labelled by high-affinity 3H-glycine uptake, we show here that goldfish horizontal cells make somatodendritic and axodendritic synapses on glycinergic interplexiform cells (Gly-IPCs) as apposed to dopaminergic interplexiform cells. Thus, horizontal cells have at least three postsynaptic targets: photoreceptors, bipolar cells and Gly-IPCs. Gly-IPCs may constitute a major alternative pathway for horizontal cell signals to reach the inner plexiform layer.  相似文献   

16.
针对多地点仓储及销售的连锁商贸企业管理系统,实现了基于IBMSystemi平台对前台Windows系统和后台服务器的连接,采用二级登录的权限实现方法,充分保障了企业的信息安全,利用服务器的通讯功能和网络管理功能实现系统主机与远程终端的连接。  相似文献   

17.
A variety of evidence indicates that calcium-dependent protein phosphorylation modulates the release of neurotransmitter from nerve terminals. For instance, the injection of rat calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-dependent PK II) into the preterminal digit of the squid giant synapse leads to an increase in the release of a so-far unidentified neurotransmitter induced by presynaptic depolarization. But until now, it has not been demonstrated that Ca2+/CaM-dependent PK II can also regulate neurotransmitter release in the vertebrate nervous system. Here we report that the introduction of Ca2+/CaM-dependent PK II, autoactivated by thiophosphorylation, into rat brain synaptosomes (isolated nerve terminals) increases the initial rate of induced release of two neurotransmitters, glutamate and noradrenaline. We also show that introduction of a selective peptidergic inhibitor of Ca2+/CaM-dependent PK II inhibits the initial rate of induced glutamate release. These results support the hypothesis that activation of Ca2+/CaM-dependent PK II in the nerve terminal removes a constraint on neurotransmitter release.  相似文献   

18.
Mechanisms and circuitry underlying directional selectivity in the retina   总被引:10,自引:0,他引:10  
Fried SI  Münch TA  Werblin FS 《Nature》2002,420(6914):411-414
In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.  相似文献   

19.
J D Levine  Y O Taiwo  S D Collins  J K Tam 《Nature》1986,323(6084):158-160
In hyperalgesic states, observed commonly as a major symptom of tissue inflammation or after central or peripheral nerve injury, non-noxious stimuli produce pain and noxious stimuli are perceived as more painful than usual. The mechanisms underlying the generation of hyperalgesia are not known. In patients with causalgia (burning pain and severe hyperalgesia after a nerve injury) activation of sympathetic post-ganglionic neurones or application of noradrenaline to painful skin exacerbates pain and hyperalgesia while sympathectomy may afford complete relief. One suggestion is that noradrenaline released from sympathetic post-ganglionic neurons increases the discharge of damaged small-diameter afferents by a direct action on the primary afferents. Here we present a new model for noradrenaline-sensitive hyperalgesia and demonstrate that the site of action of noradrenaline is not on the primary afferents but rather is presynaptic on the sympathetic post-ganglionic terminals.  相似文献   

20.
目的:研究舌慢适应传入纤维终止于三叉神经脊束核和三叉神经感觉主核形成突触的类型及突触各组成部分出现频率的差异,为神经生理学研究和神经解剖学研究提供参考资料。方法:用猫作为试验动物,采用确定部位和功能的传入纤维进行细胞内注射,电镜连续切片观察技术。结果:1.猫舌慢适应传入纤维终止于三叉神经脊束核形成的突触以中间型为主;2.猫舌慢适应传入纤维终止于三叉神经感觉主核形成的突触以复杂型为主;3.形成三联体的数目及形成突触的各组成部分出现的频率,三叉神经感觉主核相对较高。结论:三叉神经感觉主核是舌的主要终止核团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号