共查询到19条相似文献,搜索用时 73 毫秒
1.
为了有效地利用信息技术发展而产生的海量信息,信息检索与数据挖掘得到了快速的发展,通过对传统支持向量机的特点分析,针对其在文本分类中的局限性,采用了一种基于二叉树的模糊支持向量机的多分类算法,通过实验证明该算法有更好的抗干扰能力和更好的分类效果。 相似文献
2.
支持向量机的算法研究 总被引:1,自引:0,他引:1
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析.并已成为国际机器学习界的研究热点.本文主要讨论其基本原理与SVM训练算法. 相似文献
3.
支持向量机的算法研究 总被引:1,自引:0,他引:1
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析。并已成为国际机器学习界的研究热点。本文主要讨论其基本原理与SVM训练算法。 相似文献
4.
赵鹏 《齐齐哈尔大学学报(自然科学版)》2008,24(1):55-60
文本分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.其中基于支持向量机的文本分类方法的研究是信息检索领域的一个重要分支.本文首先讨论了该领域的研究状况,接着阐述并分析了在该领域中的主要研究方法以及实例, 最后对该领域研究中存在的问题和方向进行了分析. 相似文献
5.
支持向量机训练及分类算法研究 总被引:2,自引:0,他引:2
支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析等领域。针对一些主要的SVM训练算法,比较它们的特点,阐述其中最有代表性的序列最小优化(SMO)算法及其多种改进算法,还讨论一些典型的支持向量机多分类算法及支持向量机多标注算法。最后,指出亟待解决的一些问题。 相似文献
6.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价. 相似文献
7.
用于不平衡数据分类的模糊支持向量机算法 总被引:1,自引:0,他引:1
作为一种有效的机器学习技术,支持向量机已经被成功地应用于各个领域.然而当数据不平衡时,支持向量机会产生次优的分类模型;另一方面,支持向量机算法对数据集中的噪声点和野点非常敏感.为了克服以上不足,提出了一种新的用于不平衡数据分类的模糊支持向量机算法.该算法在设计样本的模糊隶属度函数时,不仅考虑训练样本到其类中心距离,而且考虑样本周围的紧密度.实验结果表明,所提模糊支持向量机算法可以有效地处理不平衡和噪声问题. 相似文献
8.
基于支持向量机的图像分类 总被引:2,自引:1,他引:2
介绍了支持向量机(SVM)的基本原理,并将它应用于图像分类.提取多种视觉特征作为SVM的输入向量,比较单一视觉特征和综合视觉特征作为SVM输入向量时的分类性能.还比较了多项式核和高斯径向基核的分类效果.实验结果表明,混合特征明显优于单一视觉特征,高斯径向基核优于多项式核. 相似文献
9.
针对面向分类去噪问题,提出了一种新的模糊支持向量机算法(ν-FSVM),并给出了通过无穷次连续可微函数建立模糊关系的方法.该方法能对训练集中的点自动赋予模糊关系,并且对带有噪声的点和孤立的点赋予较小的模糊关系.与传统的ν支持向量机比较,该算法通过建立训练集的模糊关系,能够大大减小噪声对分类的影响,从而提高分类精度,减少误差. 相似文献
10.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价. 相似文献
11.
介绍了一种用支持向量机(SVM)进行主动学习的方法,解决在某些机器学习问题中,训练样本获取代价过大带来的问题.与普通的SVM方法相比,该方法所需的样本量大大降低,而且可能达到更好的推广能力,在蒙文文本分类中的应用说明了该算法的有效性. 相似文献
12.
从降低时间和空间复杂度的角度出发,针对支持向量机的增量学习问题展开了研究,描述并比较了目前研究与应用较多的几种支持向量机增量学习算法,提出了一种基于壳向量的支持向量机渐进式增量学习算法,仿真实验结果表明:该算法在保证良好的分类精度的前提下,提高了学习效率. 相似文献
13.
基于支持向量机的栗属树种分类研究 总被引:1,自引:0,他引:1
形状特征是物体识别的重要依据。同时,分类算法的选择也将对识别的性能造成很大影响。围绕上述两个问题,以栗属树种的果实图像为例,在准确分割出目标图像的基础上,分别应用不变矩和边界矩提取其形状特征值,并使用支持向量机算法对栗属树种果实图像进行分类。实验结果表明:基于支持向量机的栗属树种果实图像分类识别准确率可达到87.5%,识别的结果较为理想。 相似文献
14.
将线性Lp(p=1)和Lε损失函数下的支持向量机回归与分类解的关系及支持向量机回归与υ-支持向量机分类解的关系,推广到非线性Lp(p≥1)和Lε损失函数上,得到这些解关系更一般的形式. 相似文献
15.
基于支持向量机的汉语问句分类 总被引:5,自引:0,他引:5
目前汉语问句分类一般都依据疑问词及其相关词的组合规则,但由于规则的提取很深地依赖于语言知识,而且很难穷举出所有的特征规则,因此会影响分类的效果.支持向量机(SVM)是建立在统计理论基础上的机器学习方法,对于小样本分类问题有很好的识别效果.文中分析和定义了汉语问句的类型,建立了以SVM为基础的问句分类模型,详细描述了问句分类特征的选取过程,并在句法特征的基础上引入语义特征进行汉语问句分类实验,分类准确率达88.7%,表明结合句法和语义特征以SVM进行汉语问句分类具有很好的效果. 相似文献
16.
基于聚类分析和支持向量机的布匹瑕疵分类方法 总被引:2,自引:0,他引:2
提出一种基于聚类分析和支持向量机(SVM)的布匹瑕疵分类方法.该方法充分利用瑕疵的几何特征,首先使用迭代自组织数据分析技术算法(ISODATA)对其进行聚类,在聚类形成的子空间内再根据瑕疵的纹理特征利用SVM进行分类.根据布匹瑕疵的特点提出一种新的几何特征,并使用各类瑕疵的几何特征均值作为初始聚类中心,提高ISODATA算法的聚类效果.实验表明,该方法有效地提高了分类准确性,降低了训练的复杂度,分类准确率可达90%. 相似文献
17.
By utilizing hyperbolic tangent function,we constructed a novel hyperbolic tangent loss function to reduce the influences of outliers on support vector machine (SVM) classification problem.The new lass fuinction not only limits the maximal loss value of outliers but also is smooth.Hyperbolic tangent SVM (HTSVM) is then proposed based on the new loss function.The experimental results show that HTSVM reduces the effects of outliers and gives better generalization performance than the classical SVM on both artificial data and UCI data sets.Therefore,the proposed hyperbolic tangent loss faction and HTSVM are both effective. 相似文献
18.
基于分类的模糊支撑向量机 总被引:1,自引:0,他引:1
基于分类的支撑向量机可以通过训练,找到2类训练点的分界面.一般2类点都是确定的,但是,在实际情况中,训练点不可能很确定的属于某一集合(具有模糊性),使得每个训练点包含的信息量也不同,传统的支撑向量机算法无法处理这类问题.给每个训练点定义了点模糊度概念,利用点模糊度来度量它包含的分类信息,由此确定点在训练中所占的权重,使包含不同信息量的训练点,在训练中起不同作用,从而得到了一种有效处理包含模糊训练点的算法. 相似文献
19.
基于支持向量机的车型分类的设计 总被引:2,自引:0,他引:2
基于支持向量机的车型分类的设计思路是通过视频采集获得车辆图像,对车辆图像进行图像预处理和特征提取后,得到分类器所需数据特征,而后采用支持向量机和二元决策树对车型分类。采用三个支持向量机的分类器和二元决策树相结合对特征数据进行分类识别,最终实现了车型分类。通过利用Libsvm(SVM模式识别与回归的软件)进行实验,取得了较好的分类效果。 相似文献