首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
无卤反应型多元素协同是环氧树脂阻燃研究的热点,本文室温合成了上述功能的活性DOPO衍生物DOPO-M和DOPO-T。它们作为固化剂,分别与4,4′-二氨基二苯甲烷混合,再与等当量环氧树脂E51固化得到阻燃元素含量可控的环氧体系。使用NMR证明了DOPO衍生物结构,使用红外跟踪其固化过程,继而使用DMTA、TGA和LOI测试分别研究了DOPO衍生物引入量、结构区别对环氧树脂热力学性能、耐热性能及阻燃性能的控制趋势。结果表明,1)阻燃环氧体系都为均相体系;2)阻燃环氧体系的耐热性能及阻燃性能均得到显著提升;3)DOPO-M比DOPO-T在提升阻燃环氧体系的耐热性能及阻燃性能上更有优势。  相似文献   

2.
无卤反应型多元素协同是环氧树脂阻燃研究的热点,室温合成了上述功能的活性DOPO衍生物DOPO-M和DOPOT。它们作为固化剂,分别与4,4'-二氨基二苯甲烷混合,再与等当量环氧树脂E51固化得到阻燃元素含量可控的环氧体系。使用NMR证明了DOPO衍生物结构,使用红外跟踪其固化过程,继而使用DMTA、TGA和LOI测试分别研究了DOPO衍生物引入量、结构区别对环氧树脂热力学性能、耐热性能及阻燃性能的控制趋势。结果表明:(1)阻燃环氧体系都为均相体系;(2)阻燃环氧体系的耐热性能及阻燃性能均得到显著提升;(3)DOPO-M比DOPO-T在提升阻燃环氧体系的耐热性能及阻燃性能上更有优势。  相似文献   

3.
研究了马来酰亚胺桐油酸酐(MTOA)耐热固化剂及固化环氧树脂绝缘材料的特性.证明了MTOA环氧胶具有桐油酸酐(TOA)环氧胶相似的固化特性.结果表明MTOA可快速固化环氧树脂,该固化物有高的耐热性能、机械性能和高温电气性能.可用于耐热胶粘剂、浸渍漆和F级耐热绝缘材料,适用于大型高压发电机.  相似文献   

4.
为了制备耐热、阻燃性能优异的新型含Si环氧丙烯酸酯(EA)纳米涂层,以KH-570改性纳米SiO2和有机硅改性EA作紫外光(UV)固化组分,并在配方中加入纳米Mg(OH)2,制备了系列UV固化新型含Si EA纳米涂层。通过红外光谱仪、紫外可见光谱仪、热重分析仪等研究紫外光固化体系涂膜耐热、阻燃及光学性能。结果表明:在有机硅改性EA中添加KH-570改性纳米SiO2,可以提高纳米涂层热稳定性、阻燃性,同时使其保持优良透明性;当改性纳米SiO2含量达5%时,涂膜耐热、阻燃性能均最佳;同时在体系中加入Mg(OH)2,可进一步改善体系的阻燃效果。  相似文献   

5.
采用傅里叶变换红外光谱(FTIR)研究了双酚A型氰酸酯(BADCy)/双酚A型环氧树脂(E-51)体系的共固化机理,通过热重分析(TGA)和扫描电子显微镜(SEM)分析了复合材料的耐热性能、断面形态,并测试了材料的冲击强度和介电性能。结果表明E-51的加入对BADCy/E-51体系固化反应有促进作用,并能显著改善材料的韧性和冲击性能。当E-51含量为30%(质量分数)时,材料的冲击强度可达14.38 kJ/m2,且复合材料仍能保持良好的热稳定性和介电性能。  相似文献   

6.
含马来酰亚胺酚醛树脂在环氧改性中的应用   总被引:3,自引:0,他引:3  
以N-(4-羟基苯基)马来酰亚胺为改性剂,合成了一系列不同马来酰亚胺含量的酚醛树脂(PMF),并以此作为一种新型的环氧固化剂对环氧树脂的热性能和阻燃性能进行改性研究.固化物的热性能研究发现由于马来酰亚胺结构的引入,固化物的初始热分解温度(380℃)和残炭率(700℃,48.6%)都有较大的提高.固化物的阻燃性能测试表明HPM的引入可有效地提高环氧固化物的阻燃性能.  相似文献   

7.
环氧树脂对其固化物性能影响的研究   总被引:1,自引:0,他引:1  
通过观察试验和测定试验,研究了不同环氧树脂对其固化物的表面质量、力学性能和热性能,测定了固化物的抗压强度、抗弯强度、抗冲击强度、负荷变形温度和维卡软化温度.试验结果表明:当F-51、甲基四氢苯酐、铝粉三者用量的质量比为100∶85∶150时,环氧树脂F-51、甲基四氢苯酐环氧固化体系所得固化物的性能优于环氧树脂E-44、甲基四氢苯酐环氧固化体系所得固化物的性能.  相似文献   

8.
以四氢呋喃为溶剂,通过磷酸与γ-氨丙基三乙氧基硅烷再经水解后得到含磷酰胺有机硅氧烷,并按不同配比加入到双酚A型环氧树脂/4,4'-二氨基二苯砜体系中混合,制备含磷酰胺有机硅杂化环氧树脂固化物.选出最优配比的含磷酰胺有机硅杂化环氧树脂固化物,加入不同配比的纳米Si O2,进一步对环氧树脂进行改性.对所得固化物的热性能、阻燃性能进行了测试.结果表明,该固化体系的阻燃性得到提高,极限氧指数达到29%;玻璃化转变温度得到提高,可达到155.9-174.7℃.添加纳米SiO_2后,改性环氧树脂的热性能和阻燃性能均进一步增强.  相似文献   

9.
通过两步法将含磷基团的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和含硅基团的硅烷偶联剂引入氧化石墨烯(GO)中,制备了磷硅协同改性的氧化石墨烯(KDGO),通过傅里叶变换红外(FT-IR)光谱、能谱散射谱(EDS)、X射线衍射(XRD)和原子力显微镜(AFM)分析对其进行表征,并将其添加到环氧树脂(EP)中进行阻燃改性,制备EP基复合材料KDGO/EP.采用热重分析(TGA)、动态热机械分析(DMA)、极限氧指数(LOI)和垂直燃烧测试复合材料的热稳定性、动态热机械性能和阻燃性能.TGA结果表明,质量分数为1%的KDGO能够保持复合材料的热稳定性,同时提高残炭率,与纯EP固化物相比,残炭率提高了10个百分点,解决了目前市场上含DOPO阻燃剂引起固化材料热稳定性下降的问题.DMA数据显示,KDGO中的环氧基能够参与EP的交联固化,使复合材料的动态热机械性能提高,有效改善了由DOPO引起的动态热机械性能下降的问题.LOI和垂直燃烧测试表明磷硅阻燃元素的协同作用有助于提高复合材料的阻燃性能,使LOI值提高到27.1%,燃烧过程无滴落现象,达到了塑料阻燃等级V-0级.  相似文献   

10.
基于2-甲基-2,5-二氧-1,2-氧磷杂环戊烷(OP)的环状酸酐结构和可以通过水解或醇解开环的特点,对OP/对苯二酚/环氧树脂预聚体的反应可行性、固化过程以及阻燃性能进行了研究;成功制备了含磷环氧树脂,固化12 h后的环氧树脂具有良好的阻燃性能,极限氧指数(LOI,%)为25.7%,垂直燃烧测试达到UL-94 V-0级别。  相似文献   

11.
以甲基巯基四氮唑和巯基嘧啶为硫源, 用溶剂热合成法原位合成两个纯无机羟基硫酸盐骨架: [Cu3(SO4)(OH)4]n(1)和[K2Co3(OH)2(SO4)3(H2O)2]n (2). 在化合物1中, 一维带状折叠—Cu3(OH)4—阳离子链被硫酸根连接形成三维羟基硫酸铜骨架; 在化合物2中, 一维折叠Co3(OH)2阳离子链被硫酸根连接形成二维羟基硫酸钴阴离子骨架, 该阴离子骨架进一步被K+连接形成三维双金属纯无机骨架, 在该三维结构中存在K+传输通道. 实验结果表明, 有机硫作为硫源为合成羟基硫酸盐提供了一种新策略.  相似文献   

12.
在辅助配体3-(2-甲基-1H-咪唑-1-基)-5-(5-甲基-1H-咪唑-1-基)吡啶(MIMIP)的辅助下, 乳酸衍生物(R)-4-(1-羧基乙氧基)苯甲酸((R)-H2CBA)和(S)-4-(1-羧基乙氧基)苯甲酸((S)-H2CBA)分别与Cd(Ⅱ)通过溶剂热反应得到一对结构新颖的单一手性配位聚合物-[Cd((R)-CBA)(MIMIP)\]·H2O (1-R)和[Cd((S)-CBA)(MIMIP)]·H2O (1-S), 并测试两个配合物的粉末衍射光谱、 热稳定性、 紫外-可见吸收光谱和荧光性质.  结果表明: 1-R和1-S均结晶于单斜的P212121空间群, 具有三维超分子框架的对映体; 在1-R中, (R)-CBA2-和MIMIP分别与Cd(Ⅱ)沿b轴形成两种右手螺旋链, 在1-S中, (S)-CBA2-和MIMIP与Cd(Ⅱ)形成对映的左手螺旋链;  (R)-CBA2-和MIMIP与Cd(Ⅱ)在1-R中形成左手螺旋链,(R)-CBA2-和MIMIP与Cd(Ⅱ)在1-S中形成对映的右手螺旋链.  相似文献   

13.
用基于氧化石墨烯量子点/多壁碳纳米管/丝网印刷电极(GOQDs/MWCNTs/SPCE*)的电化学检测方法同时检测小鼠胚胎成纤维(BALB/c 3T3)细胞中的胸腺嘧啶和胞嘧啶, 并考察富集电位、 富集时间、 pH值对胸腺嘧啶和胞嘧啶标准品电化学行为的影响. 实验结果表明: 最佳检测条件为富集电位0, 富集时间150 s,  pH=7.4; 电极对胸腺嘧啶和胞嘧啶的最低检测限分别为0.69,0.95 μmol/L;  该方法可同时灵敏检测BALB/c 3T3细胞中的胸腺嘧啶和胞嘧啶.  相似文献   

14.
设计合成含有不同取代基的二茂铁卟啉化合物, 用核磁共振氢谱、 紫外-可见光谱和红外光谱表征其结构, 并讨论取代基效应对二茂铁卟啉的荧光、 电化学、 Raman光谱的影响和变化规律. 实验结果表明:  给电子取代基使卟啉荧光光谱红移, 量子产率增大, 对Raman光谱的苯环振动影响较大; 连接给电子取代基的卟啉更易失去电子而被氧化, 连接吸电子取代基的结果相反. 因此通过改变卟啉周边的取代基可调控二茂铁卟啉的光谱和电化学性能.  相似文献   

15.
以秀丽线虫为模型, 研究药食同源植物薄荷提取物对其应激抵抗能力的影响, 并以紫外辐射为应激条件, 进一步研究薄荷提取物抵抗紫外辐射的作用机制.  结果表明: 薄荷提取物可明显提高线虫抵抗紫外辐射、 绿脓杆菌感染、 35 ℃热应激和胡桃醌氧化的应激能力; 薄荷提取物可明显降低紫外辐射后线虫体内活性氧(ROS)水平、提高超氧化物歧化酶(SOD)活性,并可通过胰岛素/IGF-1样信号通路发挥作用,  提高通路下游转录因子sod-3,hsp-12.6,hsp-16.1和hsp-16.49的mRNA水平表达量以及转录因子daf-16的细胞核定位数量;  薄荷提取物可提高线虫的运动能力和吞咽能力, 但不影响其寿命和生育能力.  相似文献   

16.
在溶剂热体系中, 将5\|羟甲基间苯二甲酸(H2HIPA)和4,4′-二(1H\|咪唑-1-基)-1,1′-联苯(4,4′-DIB)与Mn(Ⅱ)离子组装得到配合物Mn[(HIPA)(4,4′-DIB)] (1). 单晶结构分析表明, 配合物1结晶于单斜的P21/c空间群, 包含二核的Mn2(CO2)4结构单元. HIPA2-连接Mn2(CO2)4形成二维结构, 4,4′-DIB进一步将该二维结构连接成pcu型的柱层式框架. 在相似的合成条件下, 用(E)-1,2-双(吡啶-4-基)乙烯(DPEE)代替4,4′-DIB, 得到配合物Mn[(HIPA)(DPEE)]·xGuest (2). 配合物2结晶于单斜的P21/c空间群, 结构中的Mn(Ⅱ)中心与羧基形成Mn2(CO2)4次级结构单元.  配合物2的结构是一个具有sql网络的二维结构. 氮杂环配体的结构差异使Mn2(CO2)4单元在配合物1中是立体构型, 而在配合物2中为平面结构; Mn2(CO2)4的不同构型导致配合物1和2的结构特征不同.  相似文献   

17.
基于氨氮(NH+4-N)污染地下水内在生态恢复机制, 利用生态安全型天然矿物材料火山渣负载地下水中土著氮细菌进行NH+4-N污染地下水净化特性研究. 结果表明:火山渣负载土著氮细菌生物量约为2.12×107 个/g; 负载材料在去除地下水中NH+4-N时,可有效去除水化学因子,NH+4-N去除率为83.39%~98.84%,水化学因子去除能力从大到小依次为Fe2+,HCO-3,Ca2+,Mn2+,CO2-3,SO2-4,S2-,Mg2+,其中Fe2+,Mn2+,S2-,SO2-4一定程度上促进NH+4-N净化; CO2-3,HCO-3,Ca2+,Mg2+抑制NH+4-N净化; 负载材料的微观结构在净化后表面变平滑, 细小突起被覆盖. 研究结果为氮污染地下水内在生态调控修复技术研发提供了实验依据.   相似文献   

18.
为解决农业资源废弃物作物秸秆的综合利用及水体农药污染问题, 以玉米秸秆为原料, 采用水热炭化法制备水热炭, 并利用扫描电子显微镜(SEM)和Fourier变换红外光谱(FT-IR)法对玉米秸秆水热炭的表面形貌和官能团进行表征, 通过实验室模拟研究不同pH值、 离子强度、 初始浓度以及制备温度对玉米秸秆水热炭吸附水中阿特拉津的影响. 结果表明: 随着温度的升高, 水热炭产生炭微球结构和丰富的含氧官能团; 水热炭对阿特拉津的吸附动力学符合准二级动力学方程(R2≥0.970, P≤0.001), 吸附热力学符合Langmuir方程(R2≥0.992, P≤0.001), 为非线性吸附且自发进行的吸热反应; 玉米秸秆水热炭对水中阿特拉津最大吸附量(298 K)为8.862 mg/g, 最大去除率为69.74%; 水热炭对阿特拉津的吸附量随制备温度的升高而增加, 吸附量随溶液pH值和离子强度的增加而下降. 因此, 利用玉米秸秆制备的水热炭可有效吸附水中的阿特拉津, 具有较好的应用前景, 实验结果为玉米秸秆再利用和水体净化提供理论依据和数据支持.  相似文献   

19.
先用各向异性的Au纳米星(AuNS)与TiO2复合构筑金属-半导体异质核壳结构,再将硫杂杯[4]芳烃(STC[4]A)功能化于TiO2/AuNS表面制得Au纳米星/TiO2/杯芳烃(AuNS/TiO2/ STC[4]A)复合光催化材料,并通过紫外可见光谱(UV-Vis)、Fourier变换红外光谱(FT-IR)和扫描电子显微镜(SEM)等对材料进行表征, 考察AuNS/TiO2/STC[4]A对罗丹明B(RhB)的光催化降解活性.  实验结果表明,AuNS/TiO2/STC[4]A对RhB降解率可达99%,5次循环实验后,降解率仅降低1.8%.   相似文献   

20.
研究Fe(Ⅲ)对单宁酸(TA)原位修复含水层Cr(Ⅵ)污染的反应机理及效能. 结果表明,Fe(Ⅲ)通过与单宁酸配合可有效提高单宁酸对Cr(Ⅵ)污染含水层的修复效率. 单宁酸分子中邻苯三酚结构中两个相邻的酚羟基与Fe(Ⅲ)配合并提供电子,因此修复1 mol Cr(Ⅵ)至少需要9 mol单宁酸;若使Fe(Ⅲ)达到最好的强化效果, 则要求n(TA)∶n(Fe(Ⅲ))=3∶5, 此时单宁酸-Fe(Ⅲ)结构最稳定, 储存容量最大. 在Cr(Ⅵ)污染被修复后, Fe(Ⅲ)在单宁酸的作用下形成稳定的FeOOH, 对Cr(Ⅲ)进行吸附并形成共沉淀, 从而达到去除总Cr的目的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号