首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于BP神经网络的长白落叶松人工林林分平均高预测   总被引:3,自引:0,他引:3  
【目的】研究BP神经网络模型在树高预测中的应用,分析比较不同森林调查因子及不同神经网络训练算法对平均树高预测的影响,为树高预测提供新的方法。【方法】以吉林省长白落叶松人工林为对象,基于168块固定样地的314个观测数据,运用BP神经网络建模技术建立了林分平均树高生长模型。输入因子首先加入年龄,然后依次加入立地因子及林木竞争因子,分析立地因子及林木竞争因子对树高的影响。基于Matlab R2016b中的Sigmoid函数和线性函数为神经元的传递函数,分别采用贝叶斯正则化算法和Levenberg-Marquatdt算法(简称L-M算法)对网络进行训练,对比分析了贝叶斯正则化算法和L-M算法作为训练函数的差异。【结果】与L-M训练算法相比,贝叶斯正则化训练算法具有更好的泛化能力。模型中依次加入年龄、立地因子、林木竞争因子后,树高的拟合精度呈现出相同的上升趋势。采用贝叶斯正则化训练算法,当年龄作为输入因子时,决定系数R2为0.521 0,均方根误差(RMSE)为2.091 7,平均绝对误差(MAE)为1.627 6。加入立地因子后,决定系数R2提高至0.573 6,提高了10.10%,均方根误差(RMSE)为1.973 6,降低了5.65%,平均绝对误差(MAE)为1.579 7,降低了2.94%; 在此基础上,加入林木竞争因子后,决定系数R2为0.845 5,增长了47.40%, 均方根误差(RMSE)为1.187 9,下降了39.81%,平均绝对误差(MAE)为0.968 5,下降了38.69%。【结论】利用贝叶斯正则化BP神经网络可以准确地预测长白落叶松人工林的平均高。立地因子及林木竞争因子能够较好地提升林木生长预测的精度,且林木竞争因子对树高的影响明显大于立地因子。  相似文献   

2.
基于广义代数差分法的杉木人工林地位指数模型   总被引:1,自引:0,他引:1  
【目的】地位指数法是森林立地质量评价常用的一种方法。采用广义代数差分法建立适用于杉木人工林的动态地位指数模型。【方法】利用福建省将乐县国有林场杉木人工林的24个固定样地连续观测数据和20株杉木优势木树干解析数据,基于Bertalanffy-Richards模型、Lundqvist-Kolf模型和Hossfeld模型3个经典的生长方程,以广义代数差分法对杉木人工林构建了6个动态地位指数模型。模型比较时综合考虑了统计学和生物学特征,通过统计分析和图形分析筛选出最佳的模型。【结果】构建的6个动态地位指数模型都具有良好的拟合优度,调整后的决定系数都在0.9左右。基于Hossfeld 生长方程,选择a=b1+Xb=b2/X作为与立地有关的参数推导的模型确定为最佳模型,推荐采用该模型对将乐县国有林场人工杉木林进行优势树高生长预测和立地质量分类。【结论】广义代数差分法建立的动态地位指数模型具有较好预测性能,说明广义代数差分法在推导地位指数模型时是准确而有效的。在选择最优生长模型时不仅要考虑统计分析,还应该进行图形分析,从而选出满足统计学以及生物学特征的模型。  相似文献   

3.
为了给西宁周边山地及相似生态区提供青海云杉人工林立地质量评价标准和营造林技术指导,在西宁周边山地选择有代表性的27块样地,进行系统的优势木生长状况和立地因子调查。通过调查,分析主要立地因子对立地质量的影响,编制优势木高生长动态导向拟合方程。结果表明:指数回归方程y=-0.022x~3+1.410 7x~2-7.870 5x-64.97是树高地位级最适合的导向拟合曲线。以20 a为青海云杉基准林龄,确定按4个地位级评价立地质量。立地因子对立地质量的具体影响为低坡优于高坡,缓坡优于陡坡;阴坡优于半阴坡,半阴坡优于半阳坡,半阳坡优于阳坡,半阳坡和阳坡为贫瘠立地。  相似文献   

4.
长岭岗林场日本落叶松人工林立地指数表的编制   总被引:4,自引:0,他引:4  
用150株日本落叶松优势水平均树高--年龄资料,根据树高生长过程特性,在比较多个树高生长模型的基础上,选择Richards生长方程H=a(1-e^-bA)^c作为日本落叶松树高生长模型;通过优势木解析木资料分析,确定基准年龄为20年,立地指数级距为2m,在10-22m范围内划分7个指数级;用比例法展开导向曲线编制立地指数表。检验结果表明,所编立地指数表精度高,适应性强,能客观地评价长岭岗林场日本落叶松人工林生境质量。  相似文献   

5.
【目的】地位指数法是森林立地质量评价常用的一种方法, 优势高又是地位指数模型中重要的参数。本研究以杉木优势高生长为切入点,使用与年龄无关方法建立杉木人工林的优势高生长模型,模拟在林分年龄未知的情况下预测杉木人工林优势高。【方法】利用福建省将乐国有林场杉木人工林的65个固定样地连续观测数据,基于Richards方程、Lundqvist-Kolf方程和Hossfeld方程3个树高生长方程,使用与年龄无关的方法建立了9个优势高生长模型。模型检验使用决定系数、平均误差和均方根误差3个统计指标来确定最佳模型。【结果】构建的9个优势高生长模型都具有较好的拟合优度,其中以Hossfeld方程为基础方程,以参数a作为林分因子扩展参数推导而来的模型为最佳模型,而且模型参数年龄差Δt越小,模型预测精度越高。【结论】与年龄无关的地位指数模型能够准确地拟合和预测优势高生长。在异龄林中或林分年龄难以获得时,建议采用与年龄无关的地位指数模型来评估立地质量。  相似文献   

6.
Sloboda树高生长模型在火炬松人工林中的应用研究   总被引:2,自引:0,他引:2  
地位指数是立地质量相对于具体树种的数量化反映,也是森林经营和收获预估的重要依据.为了编制福建省火炬松多形地位指数,根据收集的火炬松人工林优势木树干解析资料,采用Sloboda树高生长数学模型,利用遗传算法拟合出火炬松优势高生长模型.精度检验表明:用Sloboda树高生长模型拟合的火炬松人工林多形地位指数曲线可以应用于林业生产实践.  相似文献   

7.
基于哑变量的湖南栎类天然林林分断面积生长模型   总被引:1,自引:0,他引:1  
【目的】建立含林分类型或立地类型哑变量的栎类林分断面积生长模型,为湖南栎类天然林林分断面积生长收获和预估提供理论支持。【方法】以湖南省5个区域51块栎类天然混交林样地为研究对象,选取6个具有生物学意义的理论生长方程,构建含年龄、平均优势高及林分密度指标的林分断面积生长模型,比较不同理论生长方程与密度指标对栎类天然林断面积模型拟合效果的影响,从中筛选出拟合优度较高的模型作为构建哑变量模型的基础模型; 考虑混交林立地类型的差异与优势树种的聚集分布,划分林分类型与立地类型,并分别作为哑变量加入基础模型参数及其组合中,比较林分类型哑变量模型、立地类型哑变量模型与基础模型模拟效果的差异。【结果】以株树密度作为密度指标的断面积生长模型决定系数(R2)在0.47~0.51之间,P值均小于93%,以林分密度指数作为密度指标的断面积生长模型决定系数(R2)在0.85~0.92之间,P值均大于95%,说明密度指数模拟效果优于株树密度模拟效果,其中含年龄、平均优势高与林分密度指数的Schumacher模型决定系数最大(R2=0.924 2),模拟效果最优。以Schumacher模型作为基础模型,构建含林分类型或立地类型的哑变量的模型,基础模型、林分类型模型、立地类型模型的决定系数分别为0.924 2、0.979 8、0.997 6,以立地类型作哑变量的模型要优于基础模型与林分类型模型。【结论】含哑变量模型可以有效解决天然混交林优势树种分布与立地类型差异对断面积预估的影响,提高建模的精度与模型的适用性。  相似文献   

8.
【目的】落叶松在我国东北地区广泛分布,是重要的造林和用材树种,具有生长速度快、耐寒等优点。为了准确地估算落叶松人工林林分生物量,构建了落叶松林分可加性生物量模型。【方法】以落叶松人工林为研究对象,基于黑龙江省的304块人工落叶松固定样地数据,采用非线性似乎不相关回归的方法建立了可加性生物量模型系统,使用留一交叉验证法对建立的模型进行检验。【结果】林分断面积和林分平均高对树干、树枝、树叶和树根生物量模型有显著影响,林龄和海拔也显著影响林分树干、树叶、树根生物量;坡率和坡向对树枝生物量有显著影响。树叶生物量与林分平均高、林龄和海拔呈显著负相关,树干与树根生物量则与之呈显著正相关,树枝生物量与林分平均高呈显著正相关。在所建立的可加性生物量模型中,调整后决定系数(Radj2)均在0.94以上,均方根误差(RMSE)较小。检验指标平均误差(MPE)和平均误差百分比(MPE%)均接近0,拟合指数(IF)均大于0.93,平均绝对误差(MAE)较小,且平均绝对误差百分比(MAE%)均小于11%。【结论】建立的落叶松人工林可加性生物量模型...  相似文献   

9.
黑龙江省长白落叶松人工林单木生长模型   总被引:2,自引:0,他引:2  
【目的】利用单水平线性混合模型构建了黑龙江长白落叶松人工林单木直径生长模型,为准确预测黑龙江省落叶松人工林的生长及合理经营提供理论依据。【方法】基于黑龙江省148块固定样地数据,运用逐步回归法,依次引入林木初始大小因子、竞争和立地因子,建立并评估了5种不同因变量(5年间隔期末胸高直径d5,直径增长量d5-d0,5年直径增长量的自然对数ln(d5-d0+1),直径平方增长量的自然对数ln(d25-d20+1),直径平方增长量d25-d20)的黑龙江省长白落叶松人工林传统单木生长模型,同时基于最优传统模型采用哑变量方法构建了与距离无关的单木直径生长模型,并在哑变量模型的基础上把样地作为随机效应因子,运用单水平线性混合模型的方法构建了单木直径生长模型,并利用独立检验样本数据对基础模型、哑变量模型和混合模型进行检验。【结果】对于每一种因变量的单木生长模型,依次加入林木初始大小、竞争因子和立地因子后,模型精度均有显著提高; 因变量为ln(d5-d0+1)的模型为最优单木直径生长模型。影响黑龙江省落叶松人工林单木直径生长的主要因素有林木初始大小(ln d0)、地位指数、林分每公顷断面积和大于对象木断面积和。哑变量模型在保证预估精度的同时体现了两个区域间的差异。混合效应预估模型的R2、均方误差(MSE)和均方根误差(RMSE)分别为0.978 3、0.713 7和0.844 8 cm。与传统模型相比,混合效应模型的相对平均均方误差和均方根误差较传统模型减少了0.300 6和0.162 3 cm,决定系数R2几乎相当。在模型检验中,混合效应模型呈现较好的拟合效果。【结论】基于线性混合效应的黑龙江省长白落叶松人工林的单木直径生长模型较传统模型预测精度更高。  相似文献   

10.
基于抚育间伐效应的长白落叶松人工林单木直径生长模型   总被引:2,自引:0,他引:2  
【目的】分析抚育间伐对长白落叶松人工林单木胸径(D)生长的影响规律并对其进行模拟。【方法】基于黑龙江省孟家岗林场与江山娇林场10块固定样地复测数据,建立了基于抚育间伐效应的与树木距离无关的长白落叶松单木胸径5年生长量预估模型,量化了抚育间伐对林木直径生长的影响。长白落叶松单木直径生长模型为基于样地效应的单水平线性混合效应模型,根据赤池信息准则(AIC)和贝叶斯信息准则(BIC)等统计指标和似然比检验对模型进行比较和筛选,并采用独立样本数据对模型进行检验。【结果】当地位指数一定且林分年龄较小时,抚育间伐强度越大,林木直径生长量越大; 当林分年龄较大时,抚育间伐对林木直径生长影响不明显。同一林分中,林木直径生长量随林木径阶增大呈增大趋势。长白落叶松单木直径生长模型中显著自变量为:林木前期胸径的二次方(D2)、胸径的自然对数(ln D)、林分中大于对象木的所有林木断面积之和(B)、地位指数(I)、抚育间伐年龄(Ti)和间伐强度(Pi)。落叶松单木直径生长最优混合效应模型的AIC、BIC和均方根误差均小于一般线性模型。独立样本数据检验最优线性混合效应模型和一般线性模型的拟合效率分别为0.678 和0.624。【结论】基于抚育间伐效应的落叶松直径生长的最优线性混合效应模型优于一般线性模型。模型能够较好地量化抚育间伐对落叶松人工林单木直径生长的影响。  相似文献   

11.
【目的】土壤节肢动物群落受植物群落的反馈调控。杨树人工林有助于改良盐碱地土壤质量,但是林龄如何影响土壤节肢动物群落的种类组成、结构和多样性尚不清楚,为此,笔者探究杨树人工林林龄和季节交互作用对土壤节肢动物群落的影响,为人工林生物多样性保护和生产力维持提供依据。【方法】采用野外控制试验,选择立地条件相对一致的3个不同林龄(5、10和21年生)杨树人工林,每个样地设置3个重复,分别于春季(5月)、夏季(8月)、秋季(11月)和冬季(2月)采集样品,分析不同林龄杨树人工林土壤节肢动物群落结构及多样性的季节动态变化格局。【结果】杨树人工林土壤中节肢动物优势类群为前气门亚目(Prostigmata)、甲螨亚目(Oribatida)、膜翅目(Hymenoptera)、弹尾纲(Collembola)和鞘翅目(Coleoptera),占全部捕获量的89.4%。林龄和季节变化影响土壤节肢动物数量和多样性,个体总数和物种丰富度指数的最高值出现在10年生的杨树人工林的快速生长阶段,而最低值则出现在5年生林龄的幼林阶段;均匀度指数在10年生人工林中最低。1年中,杨树人工林中土壤节肢动物个体总数和物种丰富度在5...  相似文献   

12.
【目的】探讨竞争指标和建模方法对天然闽楠(Phoebe bournei)单木冠幅预测模型的影响,以期为精准预测天然闽楠单木的冠幅提供参考。【方法】以江西省赣中25块闽楠天然次生林典型样地中的1 011株闽楠为研究对象,采用普通最小二乘法(OLS模型)、仅考虑样地水平的混合效应模型、增强回归树和随机森林4种建模方法建立单木冠幅模型,分别添加林分每公顷断面积、大于对象木的断面积之和、林分密度指数和简单竞争指数4种竞争指标,分析竞争指标对冠幅模型的影响,采用决定系数(R2)、均方根误差(RMSE)、平均相对误差绝对值(RMA)和平均绝对误差(MAE)确定最佳模型。【结果】不添加竞争指标时,模型的预测能力表现为:混合效应模型>OLS模型>增强回归树>随机森林;添加竞争指标时,最优模型表现为:混合效应模型>OLS模型>随机森林>增强回归树。OLS模型中添加大于对象木的断面积之和竞争指标时预测能力最佳;增强回归树中添加固定半径为7 m的简单竞争指数时预测能力最佳;随机森林中添加林分每公顷断面积竞争指标时预测能力最佳;混合效应模型不添加竞争指标时预测能力最佳(RMSE为0.846 0,RMA为0.211 1,MAE为0.650 1),并且都优于其他模型。【结论】研究结果可对天然闽楠单木冠幅生长进行精准预测,并为提高闽楠天然次生林的林分质量提供理论依据。  相似文献   

13.
【目的】探索西南桦与红椎"丛状行间"同龄混交林的生长动态和树干形质特征,为其大径材培育提供参考。【方法】以11年生西南桦与红椎"丛状行间"同龄混交林为对象,选取9株西南桦和10株红椎样木进行树干解析,分析混交林不同树种的生长动态、径阶蓄积构成、干形、冠高比和树干分杈率等。【结果】西南桦平均木和优势木的胸径生长速生期(连年生长量>1.0 cm)分别在第3~7年和第3~9年;红椎平均木的胸径生长速生期在第4~8年,优势木胸径生长速生期从第3年开始,直至第11年仍未结束。西南桦平均木和优势木的树高生长速生期(连年生长量>1.0 cm),分别在第1~7年和第1~8年;红椎平均木的树高生长速生期主要在第3~7年,优势木树高的生长速生期在第1~7年。西南桦平均木和优势木单株材积的生长速生期(连年生长量>0.01 m;)起始时间分别在第6年和第5年,二者直到第11年仍未结束。在造林后11年内,红椎平均木单株材积的生长量仍处于缓慢增长期。从第4年起,西南桦平均木胸径、树高和单株材积的总生长量开始显著高于红椎平均木对应生长量(P<0.05);西南桦优势木胸径、树高和单株材积的总生长量分别从第5、8、5年开始显著高于红椎优势木对应总生长量(P<0.05)。二元材积模型(V=a×10-4×Db×Hc)对西南桦与红椎的单株材积拟合及预测效果较好。在11年生混交林中,西南桦和红椎的径阶蓄积分布近似正态分布,西南桦和红椎优良级干形的林木比率分别为67.71%和97.31%,两树种树干分杈率均低于6.0%。【结论】在中幼龄期,西南桦处于混交林上层。西南桦与红椎的"丛状行间"同龄混交经营,有利于塑造西南桦与红椎的优良树干形质和林木生活力。西南桦与红椎优势木的胸径和树高生长速生期比其平均木的速生期长。  相似文献   

14.
【目的】探索西南桦与红椎"丛状行间"同龄混交林的生长动态和树干形质特征,为其大径材培育提供参考。【方法】以11年生西南桦与红椎"丛状行间"同龄混交林为对象,选取9株西南桦和10株红椎样木进行树干解析,分析混交林不同树种的生长动态、径阶蓄积构成、干形、冠高比和树干分杈率等。【结果】西南桦平均木和优势木的胸径生长速生期(连年生长量>1.0 cm)分别在第3~7年和第3~9年;红椎平均木的胸径生长速生期在第4~8年,优势木胸径生长速生期从第3年开始,直至第11年仍未结束。西南桦平均木和优势木的树高生长速生期(连年生长量>1.0 cm),分别在第1~7年和第1~8年;红椎平均木的树高生长速生期主要在第3~7年,优势木树高的生长速生期在第1~7年。西南桦平均木和优势木单株材积的生长速生期(连年生长量>0.01 m;)起始时间分别在第6年和第5年,二者直到第11年仍未结束。在造林后11年内,红椎平均木单株材积的生长量仍处于缓慢增长期。从第4年起,西南桦平均木胸径、树高和单株材积的总生长量开始显著高于红椎平均木对应生长量(P<0.05);西南桦优势木胸径、树高和单株材积的总生长量分别从第5、8、5年开始显著高于红椎优势木对应总生长量(P<0.05)。二元材积模型(V=a×10-4×Db×Hc)对西南桦与红椎的单株材积拟合及预测效果较好。在11年生混交林中,西南桦和红椎的径阶蓄积分布近似正态分布,西南桦和红椎优良级干形的林木比率分别为67.71%和97.31%,两树种树干分杈率均低于6.0%。【结论】在中幼龄期,西南桦处于混交林上层。西南桦与红椎的"丛状行间"同龄混交经营,有利于塑造西南桦与红椎的优良树干形质和林木生活力。西南桦与红椎优势木的胸径和树高生长速生期比其平均木的速生期长。  相似文献   

15.
青钱柳胸径生长和木材密度的地理变异规律   总被引:1,自引:0,他引:1  
【目的】青钱柳是我国特有的单种属植物和具有开发利用前景的珍贵树种,通过探讨青钱柳胸径生长和木材基本密度的地理变异及径向变异规律,为青钱柳材用优良地理种源筛选提供依据。【方法】以天然分布的不同地理种源青钱柳为研究对象,选择群落中的优势木和亚优势木,用生长锥在树高1.3 m(胸径位置)处同一方位钻取单株木芯,共计钻取木芯197条,测定22个地理种源各单株木芯的胸径部年轮生长量和木材基本密度。【结果】22个青钱柳地理种源的胸径生长存在极显著差异(P<0.01)。林龄为20年生时,22个青钱柳地理种源胸径平均生长量为18.6 cm,变幅在16.7~20.9 cm,总体呈现出从西北到东南生长量递增的趋势; 青钱柳的胸径连年生长量在0.69~1.24 cm,随林木年龄递增,其连年生长量在波动中逐渐下降。不同地理种源青钱柳的平均木材基本密度存在极显著差异(P<0.001),22个地理种源青钱柳木材基本密度的平均值为0.470 g/cm3,变幅在0.400~0.510 g/cm3; 不同生长年轮间平均基本密度存在显著差异,其木材的平均基本密度随生长年轮的递增呈现径向递增的趋势,但前18 a其木材基本密度不存在显著差异。相关分析表明,青钱柳胸径生长与木材基本密度间存在显著线性负相关(P<0.05)。【结论】不同地理种源青钱柳的胸径生长和木材基本密度存在显著差异,为青钱柳材用优良地理种源筛选提供了良好空间和可能性。  相似文献   

16.
【目的】研究气候变化对落叶松人工林生物量及其生长的影响,为落叶松人工林碳估测和适应性经营决策提供依据。【方法】利用华北和东北地区第6~8次森林资源连续清查落叶松人工纯林固定样地数据,基于理论生长方程建立林分生物量生长模型。并将不同种落叶松作为哑变量,建立了气候敏感的林分生物量生长模型,气候因子为年湿热指数(AHM)。模拟未来气候不变、两种温室气体代表性浓度路径(RCPs)(包括RCP 4.5和RCP 8.5)3种气候变化情景下的林分生物量及其连年生长量,采用两种RCP气候情景与当前情景生物量估计结果的相对差值量化气候变化对林分生物量及其生长的影响。【结果】林分生物量的基础模型、含哑变量的模型、含气候变量和哑变量生长模型的决定系数R2分别为0.938 2、0.947 0和0.950 7,采用哑变量和考虑气候因子能够明显改善模型表现。模型模拟结果表明,与当前情景比较,各树种的林分生物量及其连年生长量在RCP 4.5和RCP 8.5气候变化情景下既有增加也有减少的趋势。对于林分生物量,RCP 4.5和RCP 8.5情景下的相对差值的均值区间分别为-3.02%~2.69%...  相似文献   

17.
密度调控对米老排中龄人工林生长的影响   总被引:1,自引:0,他引:1  
【目的】密度是影响林分生产力的关键因素之一,分析密度调控对米老排中龄林生长的影响,进而为其间伐密度调控提供决策依据。【方法】以南亚热带中等立地两种不同密度调控的米老排中龄林为对象,按优势木、中等木、被压木的条件选取了28株标准木(每林分各14株),基于2 m区分段的中央断面积树干解析法和双侧t检验的统计分析法,对不同调控密度下米老排林分的平均木、优势木和林分蓄积等生长过程进行对比分析。【结果】米老排径向生长的缓慢期在第1~2年,速生期在第3~10年,衰减期在第14年后。树高的早期速生特性明显,连年生长量呈多峰状,速生期主要在第2~6年。平均木与优势木材积生长的缓慢期均在前6年,从第8年起均进入速生期; 密度对平均木材积连年生长与林分数量成熟时间的影响显著,哨平试验林(在第12年经过生长伐1次,伐后林分最终密度为1 200株/hm2)数量成熟在第24年,而青山试验林(分别在第12年、第17年、第25年经过3次生长伐后,林分最终密度为520株/hm2)直至第34年仍未达到数量成熟。中弱度间伐(株数间伐强度<30%)对中龄林蓄积总生长量的影响不显著,对林分蓄积连年生长量短期有一定影响; 强度间伐(株数间伐强度>30%)对中龄林蓄积总生长量与连年生长量的影响显著(P<0.05)。在第14年后,米老排树种的实验形数趋于稳定。【结论】林分密度调控在520~1 200 株/hm2的范围内,密度调控措施对米老排平均木的胸径和材积的生长影响显著(P<0.05),对林分树高和平均实验形数的影响不显著,对优势木的胸径与材积的短期生长影响显著(P<0.05),对其长期生长的影响不显著,对减小林分径阶分化及提高大径木比例的作用明显。  相似文献   

18.
【目的】基于不同直径分布预测模型(Weibull分布模型、Gamma分布模型、Lognormal分布模型),构建包含华北落叶松林分因子的直径分布线性混合效应模型,有助于分析直径分布对林分因子动态变化的响应。【方法】利用塞罕坝华北落叶松人工林标准地调查数据,应用最大似然估计法(Maximum Likelihood Estimation, MLE)估计模型参数,通过K-S(Kolmogorov-Smirnov)检验、C-V(Cramer-von Mises)检验、A-D(Anderson-Darling)检验对模型适用性进行检验,基于最优模型构建华北落叶松人工林直径分布线性混合效应模型。【结果】塞罕坝华北落叶松人工林直径分布最优模型为Weibull分布;基于最优模型,构建了包含优势高、断面积、对数密度的线性混合效应模型,当3个参数随机效应方差-协方差结构和误差项结构均为对角矩阵结构[UN(1)]时,模型的拟合效果最好。包含位置、尺度、形状3参数随机效应项模型的决定系数R2分别为0.895、0.888、0.801,均方误差(MSE)分别为5.365、1.724、1.151,均方根误差(RMSE)分别为2.316、1.313、1.073,拟合结果均较好。【结论】线性混合效应模型具有较好的预测直径分布能力,可为精准预测华北落叶松人工林直径分布提供理论依据和技术参数。  相似文献   

19.
【目的】为实现油茶果实尺寸及大小分布的快速获取,提出一种基于相机拍摄的油茶果形状特征参数批量化提取方法。【方法】首先将采摘油茶果摆放于含刻度尺的背景板,利用相机快速获取油茶果图像并进行校正;然后利用Mask R-CNN模型对图像油茶果进行快速检测计数,根据生成的掩码采用椭圆拟合法统计油茶果特征参数(长轴长、短轴长、面积、周长)的像元个数;最后结合背景板刻度尺计算的像元大小,获取油茶果特征参数,同时利用实测值进行精度验证。【结果】Mask R-CNN模型的平均识别准确率和召回率分别为99.55%和91.19%,测度值为95.22%,满足用于统计油茶果形状特征参数的要求。对油茶果面积的估测精度最高,决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.999 0、10.75 mm2、14.88 mm2;其次为周长和长轴长,短轴长的估测精度最低,其R2、MAE、RMSE分别为0.864 7、3.15 mm、3.74 mm。【结论】该方法实现了油茶果采摘后的快速准确计数以及形状特征参数的批量化提取,可为大量果实特征参数的快速准确检测提供参考,为指导油茶果实分级和快速测产提供科学依据。  相似文献   

20.
【目的】准确估测亚热带常绿阔叶林木本植物幼苗、幼树及灌木的地上生物量,为森林生态系统的经营管理提供理论参考。【方法】通过采样准确获得九连山39种木本植物746个单株样本的地径(d)、树高(h)和木材基本密度(ρ),以及各器官(叶、枝、干)的地上生物量观测值,并按生活型将样本分为乔木组、小乔木组和灌木组3类,分别以d2、ρd2、d2h和ρd2h为自变量拟合模型,根据拟合模型的R2值和估计值的标准误(SEE)选择最优生物量模型。【结果】九连山常见木本植物的木材基本密度在0.459~0.784 g/cm3之间; 推导的64个生物量模型都具有较高的R2值和较低的SEE值,据此选择出16个最优生物量模型。其中,小乔木组和灌木组的叶片和枝条生物量在只含自变量d时具有较高的R2值,而乔木组和小乔木组树干以及总的地上生物量在含自变量d、h和ρ时具有较高的R2值和SEE值。【结论】研究拟合的模型可准确估算该地区及相似地区常见木本植物幼苗、幼树及灌木的地上生物量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号