首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一个图的正常全染色如果相邻点的点染色及其关联边染色集合是不同的,则称为图的邻点可区别全染色,其所用到的最少颜色数称为图的邻点可区别全色数.该文得到了冠图圈与圈(星,完全图)的邻点可区别全色数.  相似文献   

2.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k)的映射f满足:对任意uυ,υw∈E(G),u≠w,有f(uv)≠f(υw);对任意uυ∈E(G),有,(u)≠,(υ),f(u)≠f(uυ),f(υ)≠f(uυ);那么称f为G的k-正常全染色,若,还满足对任意uυ∈E(G),有C(u)≠C(υ),其中C(u)={(u))∪{f(uυ)|uυ∈E(G),υ∈V(G)),那么称,为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色)为G的邻点可区别的全色数,记作xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

3.
根据路的幂图Pkn的结构性质,用穷染、递推的方法,讨论了Pkn的邻点可区别全染色和邻点可区别-VE全染色,得到了相应的色数,并给出了一种染色方案.  相似文献   

4.
根据路的幂图Pkn的结构性质,用穷染、递推的方法,讨论了Pkn的邻点可区别全染色和邻点可区别-VE全染色,得到了相应的色数,并给出了一种染色方案.  相似文献   

5.
根据冠图Cm.Sn和Cm.Pn的结构性质,用穷染递推的方法,讨论了Cm.Sn和Cm.Pn的邻点可区别Ⅰ-全染色,得到了相应的色数,并给出了具体的染色方案.  相似文献   

6.
设G的阶数不小于2的简单连通图。G的k-正常全染色称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同。这样的k中最小者称为G的邻点可区别全色数。本文主要是给出了星图和路的联图的邻点可区别全色数,并提出了一猜想。  相似文献   

7.
对于一个正常的全染色,相邻点满足顶点及其关联边染色色集不同的条件时,称为邻点可区别全染色。其所用最少染色数称为邻点可区别全色数。就圈Cm与星Sn的联图CmVS,得到m,n任意取值下的邻点可区别全色数。  相似文献   

8.
一类联图的点可区别全色数与邻点可区别全色数   总被引:1,自引:0,他引:1  
研究了一类联图KnVG的点可区别与邻点可区别全染色。证明了|V(G)|=n≥2时,则KnVG的点可区别与邻点可区别全染色均为2n+1。其中蚝VG为n阶完全图疋与简单图G的联图。  相似文献   

9.
给出了多重联图SmVPnVPn的邻点可区别全色数。  相似文献   

10.
对一个简单图G的一个正常全染色,来说,G的点v的色集合C(v)是与v关联的边的颜色以及点v的颜色所构成的集合.对此f,如果G的任意两个相邻顶点的色集合不同,则称,为G的邻点可区别全染色.对G进行邻点可区别全染色所需要的最少颜色数称为G的邻点可区别全色数.对图rK2∨K8的邻点可区别全色数进行了讨论.  相似文献   

11.
利用组合分析方法研究r阶空图与s阶完全图的联图Kcr∨Ks的邻点可区别全色数问题, 得到了当r+s为奇数且s>r2+2r-1时, χat(Kcr∨Ks)=r+s+2, 其中χat(G)表示图G的邻点可区别全色数.  相似文献   

12.
对一个简单图G的一个正常全染色f来说,G的点v的色集合C(V)是与v关联的边的颜色以及点v的颜色所构成的集合.对此f,如果G的任意两个相邻顶点的色集合不同,则称f为G的邻点可区别全染色.对G进行邻点可区别全染色所需要的最少颜色数称为G的邻点可区别全色数.对图rK2∨K8的邻点可区别全色数进行了讨论.  相似文献   

13.
Cm ∨ Kn的邻点可区别的边色数   总被引:6,自引:2,他引:4  
得到了联图Cm V Kn的邻点可区别的边色数.  相似文献   

14.
定义图Sm*Cn为V(Sm*Cn)={ω,uij}i=1,2,…,m;j=1,2,…,n},E(Sm*Cn)={wuil}i=1,2,…m}∪uijuij 1}i=1,2,…,m;j=1,2,…,n-1}∪}uinuil|i=1,2,…,m},文章给出了Sm*Cn的邻点可区别的边色数。  相似文献   

15.
设G的阶数不小于2的简单连通图.G的k-正常全染色称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同.这样的k中最小者称为G的邻点可区别全色数.本文主要是给出了星图和路的联图的邻点可区别全色数,并提出了一猜想.  相似文献   

16.
为了解决图的邻点可区别全染色问题中一个图的色数算法问题,以积图的结构研究为基础,采用分析法,对pm×Kn,n的邻点可区别全染色问题进行了研究,得到了它的邻点可区别全色数.  相似文献   

17.
研究若干联图的邻点可区别全染色,证明了:当n≥3时,χat(Kn∨Cn)=χat(Kn∨Pn)=2n+1;当n≥4时,χat(Kn∨Wn?1)=χat(Kn∨Fn?1)=χat(Kn∨Sn?1)=2n+1.  相似文献   

18.
设G是简单图,f 是从V(G)∪E(G) 到{1,2,…,k}的一个映射.对每个u∈V(G),令C(u)={f(u)}∪{f(uv)|v∈V(G),uv∈E(G)}.如果f是k-正常全染色,且对任意u,v∈V(G),有C(u)≠C(v),那么称f为图G的点可区别全染色(简称为k-VDTC).数χv t(G)=min{k|G有k-VDTC}称为图G的点可区别全色数.给出m阶路Pm和n 1阶星Sn的联图的点可区别全色数.  相似文献   

19.
关于几类特殊图的Mycielski图的邻点可区别全色数   总被引:2,自引:6,他引:2  
设G是一个简单图,f是一个从V(G)∪ E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}.如果f是G的正常全染色且u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设xat(G)=min{k|G存在k-AVDTC},则称xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数.  相似文献   

20.
两类4-正则循环图的邻点可区别全色数   总被引:4,自引:0,他引:4  
设G是阶数不小于2的连通图,则其邻点可区别全染色是指G中任意两个相邻的顶点有不同的颜色和色集合,且任意相邻的两条边及一个顶点与其关联边的颜色也不相同.给出了两类邻接矩阵的第一行分别为(0,1,0,1,0,…,0)和(0,1,0,0,1,0,…,0)的循环图的邻点可区别金色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号