首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
建立了一个用于求解一类时滞非线性抛物型方程时间周期解的有限差分方法,在空间和时间方向上该方法分别具有四阶和二阶精度.为了证明解的存在唯一性,建立了一个单调迭代算法,该算法也给出了一个求解算法.同时讨论了数值解的收敛性.  相似文献   

2.
时滞非线性抛物型方程时间周期解的有限差分方法   总被引:2,自引:0,他引:2  
文章建立了一个用于求解时滞非线性抛物型方程时间周期解的有限差分方法,在空间和时间方向上该方法分别具有四阶和二阶精度;为了证明解的存在唯一性,建立了一个单调迭代算法,该算法也给出了一个求解算法, 同时讨论了数值解的收敛性.  相似文献   

3.
建立了一个用于求解非线性抛物型方程时间周期解的有限差分方法,在空间和时间方向上该方法分别具有四阶和两阶精度. 为了证明解的存在唯一性,建立了一个单调迭代算法,该算法也给出了一个求解算法. 同时讨论了数值解的收敛性. 数值结果显示了该方法的优越性.  相似文献   

4.
5.
求解非线性时滞反应扩散方程的有限差分格式   总被引:1,自引:0,他引:1  
建立了一个用于求解非线性时滞反应扩散方程的有限差分格式,在空间和时间方向上该格式分别具有四阶和两阶精度,用上下解方法给出了有限差分解的存在和唯一性,建立了一个单调迭代用于计算有限差分解,数值结果显示了该方法的优越性.  相似文献   

6.
建立了一个具有时间周期的非线性抛物型方程的隐式差分格式,差分格式的精度为O(k2+h4),并用离散泛函分析的方法证明了格式的收敛性和稳定性.  相似文献   

7.
本文用Galerkin方法证明了问题(1),(2)在空间W_(2,0)~2=_2~1∩W_2~2中解的存在唯一性,讨论了解的周期性和概周期性。  相似文献   

8.
一类非线性含时滞阻尼项的抛物型方程解的振动性质   总被引:2,自引:2,他引:2  
本文研究一类非线性含时滞抛物型方程解的振动问题,得到判别这类方程振动性的几个充分条件。  相似文献   

9.
针对一类四阶非线性抛物方程的初边值问题建立紧致差分格式,利用降阶的思想,通过引入中间变量将原四阶问题转化成二阶非线性方程组.对方程中的时间导数项和空间导数项分别采用Crank-Nicolson格式和四阶紧致差分格式进行离散,对非线性项采用外插的方法进行处理,从而得到原问题的三层线性紧致差分格式,其局部截断误差为■.数值算例表明该格式具有良好的计算效果.基于四阶非线性抛物方程在薄膜理论等问题中的重要作用,对此类方程构造高精度的紧致差分格式,可以使该方程在有关工程计算方面得到更好的应用,因此该研究成果具有重要的理论意义和广泛的应用前景.  相似文献   

10.
任留成 《河南科学》1996,14(1):31-34
在假定a’(u)≥0条件下证明了非线性退缩抛物型方程(a(u))t=(c(u))xx-(K(u))x+f(u)的第一边值问题广义解的唯一性。  相似文献   

11.
求解非线性反应扩散方程的有限差分格式   总被引:4,自引:1,他引:4  
该文建立了一个用于求解非线性反应扩散方程的有限差分格式,给出了一个单调迭代方法用于求解所导致的离散问题,讨论了有限差分格式的收敛性,数值结果显示了该方法的优越性。  相似文献   

12.
研究一类具连续分布滞量的非线性抛物型方程解的振动性,利用Green定理和时滞微分不等式给出了该类方程所有解振动的若干充分条件.  相似文献   

13.
研究一类具连续分布滞量的非线性中立型抛物型偏泛函微分方程解的强迫振动性,利用平均值技巧和Robin特征函数得到了这类方程在Robin边值条件。了解振动的充分条件。  相似文献   

14.
考虑带时滞的退化半线性抛物方程的熄灭问题.利用正则化方法和上下解技巧,我们得到了上述问题经典解的存在惟一性,同时还证明了存在一个临界长度α*使得上述问题的解α〈α*时整体存在,而当α〉α*时在有限时间内熄灭.进而我们还得到关于临界长度α*的一个简单估计.  相似文献   

15.
讨论了一类非线性抛物型时滞偏微分方程系统的振动性,利用空间平均法和泛函微分方程的某些结果,获得了该类系统在第1类边值条件下所有解振动的若干充分条件.结论充分表明振动是由时滞量引起的.  相似文献   

16.
非线性脉冲中立型时滞抛物偏微分方程的振动性   总被引:4,自引:1,他引:4  
研究一类非线性脉冲中立型时滞抛物偏微分方程解的振动性, 借助一阶脉冲中立型微分不等式, 获得了该类方程在两类不同边值条件下振动的若干新的充分性判据. 所得结果改进了已有的结果, 且充分反映了脉冲和时滞在振动中的影响作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号